Applications of Generative String-Substitution Systems in Computer Music

Roger Luke DuBois

Submitted in partial fulfillment of the
requirements for the degree
of Doctor of Musical Arts
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY
2003

© 2003
Roger Luke DuBois
All Rights Reserved

ABSTRACT
Applications of Generative String-Substitution Systems in Computer Music

Roger Luke DuBois

The purpose of this dissertation is to create and explore potential taxonomies for
using algorithmic string-substitution systems in the generation of music. The focus of the
author’s research is on using a specific category of string rewriting systems (called
Lindenmayer, or L-systems) to generate musical material based on a musical primer
provided by a live musician or musicians. The author explores and describes a variety of
possible composing methodologies whereby a computer can generate, in real time,
appropriate accompanying music and signal processing to a live performer. By
experimenting with different taxonomies of mapping source material (live musical input)
to accompanying processes (provided by the computer), an extensive system for
generating a varied, yet systematically cohesive, corpus of musical work can be achieved.
A series of short compositions based on this string-substitution process are included as

applications of this system.

Table of Contents

List of Figures i1
Acknowledgements v
Dedication v
Preface vi

Applications of Generative String-Substitution Systems in Computer Music

1. Introduction 1
2. Lindenmayer Systems 7
Overview of L-systems 9
Turtle graphics and branching 13
Lindenmayer Systems and music: prior art 18
3. Mapping and Rewriting Schemes 25
Event-literal symbolic mapping 28
Spatial symbolic mapping 34
Static-length L-systems 38
Parametric symbolic mapping (metadata) 41
4. Interactive Performance Using L-systems 53
Overview of Scheherazade 54
Symbolic encoding of musical information 59
L-systems as transfer functions 62
L-systems as symbolic filters 64
Figurative encoding 68
Branching as polyphonic accompaniment 71
Parametric parsing 74
5. Conclusion 79
Appendix: source code examples 82
jitlinden.c 83
max.jit.turtle.c 90
jit.lindenpoly.c 94
Bibliography 98
Scores 102
Growing Pains 103
Repeat After Me 128

Biology 146

List of Figures

Chapter 2

2.1 (a simple L-system definition)

2.2 (generations 0-5 of the L-system in 2.1)

2.3 (simple Turtle Graphics instruction set)

2.4 (an L-system definition of the quadratic Koch island)
2.5 (generations 0-3 of the Koch island as graphics)

2.6 (an L-system definition of Luke’s hypothetical fern)
2.7 (generations 0-5 of Luke’s hypothetical fern as graphics)
2.8 (generation 1 of the Koch island realized as music)
2.9 (flowchart of Prusinkiewicz’ musical interpreter)
2.10 (flowchart of Scheherazade)

Chapter 3

3.1 (common HCI mappings for personal computers)
3.2 (a simple L-system definition)

3.3 (generation 8 of the L-system in 3.2)

3.4 (generation 8 realized as music)

3.5 (rhythmic palette of 3.4)

3.6 (an L-system definition of Luke’s hypothetical fern)
3.7 (generation 5 of Luke’s hypothetical fern)

3.8 (pitch mapping chart for Growing Pains)

3.9 (motif from Growing Pains in sections A and F)
3.10 (motif from Growing Pains in sections B and H)
3.11 (motif from Growing Pains as graphics)

3.12 (a context-dependent L-system)

3.13 (generations 0-5 of the L-system in 3.12)

3.14 (generations 0-5 of the L-system in 3.12 as chords)
3.15 (the music in 3.14 re-written on two staff systems)
3.16 (generations 0-5 of the L-system in 3.12 as a melody)
3.17 (the Sierpinski triangle defined as an L-system)
3.18 (the Sierpinski triangle as graphics)

3.19 (the Sierpinski triangle as music)

3.20 (an L-system with a six-symbol alphabet)

3.21 (generations 05 of the L-system in 3.20)

3.22 (a simple musical parser)

3.23 (generations 0-5 of the L-system in 3.20 as music)
3.24 (a parametric musical parser)

3.25 (generation 5 of the L-system in 3.20 as music)
3.26 (statistical breakdown of the L-system in 3.20)
Chapter 4

4.1 (flowchart of Scheherazade)

4.2 (“The Star Spangled Banner’ encoded as a numerical sequence)

4.3 (pc/octave breakdown of 4.2)
4.4 (a symbolic transfer function as an L-system)
4.5 (a more complex symbolic transfer function)

i1

11
11
14
15
15
16
17
19
20
22

27
29
29
29
30
30
30-31
32
32
33
33
35
35
36
37
38
39
39
41
42
42-43
43
44
46
48
50

54
61
61
62
63

4.6 (chromatic scale played through the function in 4.5)

4.7 (melodic fragment)

4.8 (selective symbolic transfer function)

4.9 (melody in 4.7 transformed by the L-system in 4.8)

4.10 (an L-system with a six-symbol alphabet)

4.11 (an instruction set for the L-system in 4.10)

4.12 (melody in 4.7 transformed by the L-system in 4.10)
4.13 (impulse response of the L-system in 4.10)

4.14 (an L-system with branching and a three-symbol axiom)
4.15 (generation 2 of the L-system in 4.14 as a polyphony graph)
4.16 (a musical parser for the L-system in 4.14)

4.17 (generation 2 of the L-system in 4.14 as music)

4.18 (L-system for the echoes in Repeat After Me)

4.19 (L-system for granulation in Repeat After Me)

i

63
65
65
66
68
68
70
71
72
72
73
73
76
77

Acknowledgements

I’d like to thank the following people for their generous help and support
throughout my career at Columbia: Brad Garton, Fred Lerdahl, and Jonathan Kramer for
their help and support on this dissertation and all of my endeavors; Terry Pender,
Thanassis Rikakis, Dan Trueman, Douglas Repetto, Kate Hofstetter, Tania Saintil,
Douglas Geers, Matthew Suttor, John Halle, David Birchfield, Rozalie Hirs, James Feli,
David Topper, and all the faculty, staff, and students of the Computer Music Center,
Columbia University, both past and present; David Zicarelli, Joshua Kit Clayton, Jeremy
Bernstein, Richard Dudas, Randall Jones, Adam Schabtach, Darwin Grosse, Lilli Hart,
and everyone at Cycling’74 involved in the Jitter project, especially Gregory Taylor and
Chris Dobrian for taking time from their busy schedules to offer their advice and
assistance on this project; Toni Dove, Elliott Sharp, Michael Gordon, Julia Wolfe, Chris
Mann, Paul Lansky, Perry Cook, Curtis Bahn, Tomie Hahn, Paul D. Miller, Claude Ghez,
Eric Rosenzveig and the staff at Engine27 and Harvestworks for their support and
encouragement; Robert Rowe, Dafna Naphtali, Joel Chadabe, Tom Beyer, and the faculty
and staff in the Music Technology Department of the Steinhardt School of Education,
New York University; Jared Lowder and my graduate students at the School of Visual
Arts for their encouragement; Joel Ryan, Frank Balde, and everyone at STEIM, for their
support in the Summer of 2000; Anne Gefell at the Columbia University Music
Department; Katharyn Yew and Meg Schedel; Stephen Krieger, Paul Feuer, Rachael
Finn, Mark McNamara, Josh Druckman, Johnathan Lee, Ken Thomson, and everyone
who’s been involved with the Freight Elevator Quartet over the past six years; Natacha
Diels and Maja Cerar for performing these pieces; the DuBois family; Susan Gladstone,
for her love and support.

iv

Dedication

This is for Harriet DuBois, and all who loved her.
I hope where she is, she can hear this.

Preface

In the spring of 2000 I took a break from composition to try my hand as a video
artist and installation designer. Working with Mark McNamara, I completed a set of
pieces over the following years that attempted to tie interesting aspects of visual
information with a relevant and complementary soundtrack using methodologies
borrowed from my research into auditory display. The resulting works, starting with
SoundScape Navigator, concentrated on using Fourier analysis of interesting sounds to
generate virtual visual spaces that corresponded to sound environments. That summer,
during an artist residency at STEIM in the Netherlands we experimented with camera-
tracking technology to accomplish the opposite effect: allowing a performer to “draw” a
sonogram and then see it projected in real-time as the sound was synthesized, as if the
performer were painting on a canvas that functioned as a musical instrument. While
these experiments were somewhat limited, they offered a fairly interesting system for
what Mark and I called “cutting art both ways,” translating visual material into sound and
vice versa using exactly the same intermediary algorithm and technology. I found this
idea very attractive, but the implementation I was following at the time left much to be
desired, mostly because of the directness of the audiovisual translation and the lack of
any structural methodology. The simplicity of the system, which made it perfect for
installation pieces and movement experiments, made it next to useless when trying to
integrate it into a performed piece that had to withstand repeated critical listening and
viewing.

The following year I was invited to join the development team at Cycling’74 on a

new set of extensions to Max/MSP, an object-oriented programming and development

vi

environment for music, sound, and multimedia that was originally developed at IRCAM,
and which for the last decade has served as the closest thing in interactive music systems
to a lingua franca. We were given the provisional mandate of developing a set of Max
objects to enable the real-time manipulation of video streams. In designing the system,
however, a technical Pandora’s Box had become opened, as it was quickly established
that video was simply a subset (and a very small one, at that) of information that can be
stored as a sequence of matrices in computer memory. Once the concept of matrices had
been defined, it became our task to extend the paradigm to include support for other types
of data that could be constructed as a matrix (including audio, spectral data, musical
information wrapped as MIDI, etc.). It was by delving through possible applications for
matrices that I stumbled across Lindenmayer and his amazing work, and realized that his
systems for string substitution and re-writing, initially designed for the task of visualizing
growth algorithms to better understand plant evolution, were exactly what I was looking
for to integrate music and graphics in a new and meaningful way.

The bulk of this dissertation concerns itself with some ideas I have about how to
make interesting music, and interesting art, using Lindenmayer systems. The writing that
follows this preface takes for granted the idea that computer-mediated interactive
performance systems, wherein a human is somehow engaged in a performing endeavor
with a machine running an algorithm, is an aesthetically valid and worthwhile modus
operandi for a composer. At several points in the work I will discuss issues of interactive
performance, such as the technical feasibility of various aspects of the system I’ve
designed, the relative merits of different program designs, and the value of efficiency and

determinism in developing interactive software that can accept an arbitrary input. At all

vii

times I will be taking as rhetorical the question of whether the medium of interactive
performance itself is of any use. Rather than leave that question as completely rhetorical
(though it would probably make my life easier), I will attempt to clarify and defend my
assumptions here.

Many of the fundamental assumptions about involving computers in the
performance process (whether in music, dance, or any other medium where human
agency is somehow involved) pivots around two axioms, one of which is self-evident,
and other which seems, at face value, completely absurd. The first is that computers can
accomplish tasks that are outside the reach of human action. A computer running an
audio synthesis algorithm can generate streams of musical information of a speed and
complexity that exceeds human performance dexterity. Put simply, my computer can
generate notes faster, with better timing, and with a better memory, than your best
violinist. While this may be true, there is implicit in that statement the flawed
assumption that a performance that is always perfect, no matter how complex, is
somehow better than an imperfect performance by a musician. In fact, most of the
cutting edge research in computer music over the last decade and a half, from physical
modeling synthesis algorithms to style- and performance-modeling using musical
grammars, has been focused on making computer performances more human, i.e. making
them less “perfect.”

The other assumption revolves around the murky definition of the word
interactive. My dictionary informs me that the primary definition of the word interactive
is “involving the communication or collaboration of people or things.” A second

dictionary defines the word interactive as “allowing or involving the exchange of

viil

information or instructions between a person and a machine such as a computer or a
television.”

It turns out that people often conflate these two definitions of the term, to imply
that human-computer interaction is somehow a collaborative process. The sad truth,
though, is that there are very few scenarios in which computers really respond in a natural
way to human performance, enough to convince the human participant that what is
happening is truly a collaborative endeavor. Most pieces of “interactive” computer music
tend to be merely “reactive”, in the sense that the computer “reacts” to actions by the
performer. The performer, typically working off of a score or predetermined series of
instructions, only “reacts” to the computer insofar as she or he needs to listen to what the
computer does to go to the next step in the musical form. Typically this decision is
binary; for example, many interactive pieces use score-following systems to have the
computer “listen” to the performer, cueing events in the piece (electronic sounds,
samples, signal processing effects, etc.) when the performer gets to a certain note or
passage. The interaction that occurs on the performer side is often only a confirmation
that the system indeed worked. If the computer misses the recognition of a note, the
performer will often replay the note, and so on.

A truly interactive experience can be mediated only through creating computer
response scenarios that are more fluid and less deterministic than a simple series of cues.
On the human side, composition strategies that encourage active listening on the part of
the performer (such as cues to mimic an aleatoric musical line from the computer on the
performer’s instrument) can create true interplay between performer and machine. Some

of the ideas in this paper outline ways to use models to encourage this type of scenario,

X

though it is up to the imagination of the composer to design the interactions that will
make them succeed.

By creating a truly responsive interactive environment that allows extensive
musical interplay between performer and computer, a very satisfying musical experience
can result. With so-called interactive discourse permeating our workplaces, our
environment, and our living spaces, artists must face the challenge of developing
interactive art that creates a dialogue rather than a monologue. Only by demonstrating
the successful execution of these pieces over and over again can we create interactive

experiences that rise above the noise floor of the machines all around us.

R. Luke DuBois

April 2003

1. Introduction

The evolution of music can be described, to some extent, as the evolution of form.
The gradual incorporation and rejection of different formalisms by a musical culture
gives a listener insight into both the aesthetic and technical concerns of the music, as well
as intuitions into the culture at large. The modus operandi of dissecting a body of
musical work to determine its formal underpinnings is a staple of historical and
theoretical enquiry, regardless of whether the researcher in question is investigating a
particular piece of music, a composer, a genre, a historical culture, or a sociological or
psychological premise that may unfold in the music. The complexity of these formalisms,
combined with their premise (mathematical, psychoacoustic, theological) provides to
some degree a functional barometer for what a given group of composers, and by
extension their larger culture, were concerned with at the time.

To take the most relevant example for our purposes, the process of incorporating
mathematical processes into the making of music has a long and interesting history.
While the term algorithmic composition' is only appropriate in certain contexts, the
process of using mathematical or pseudo-mathematical rules to extrapolate musical form
has been part and parcel of the Western musical experience since the development of
musical “canon” form in the 15" Century (Maurer, 1999). While not dependent on
algorithms in the strict sense (see below), composers from Mozart onwards have

employed mathematical systems to explore compositional strategies.

' Defined by Adam Alpern as “the process of using some formal procedure to make
music with minimal human intervention” (Lee and Alpern 1995).

The term algorithm’ is defined as a detailed and unambiguous sequence of actions
needed to perform a task in a finite number of steps. While the term is often
misinterpreted as to be synonymous with any task performed on a digital computer, it’s
important to clarify that algorithmic procedures in music (and in everything else) predate
the era of thinking machines. Serial and set-theoretic procedures in music, for example,
in many cases fulfill the definition for algorithmic composition in the domains in which
serial manipulations apply. The fact that the composer retains a variable degree of
control over every other aspect of the composition fails to dilute the fact that she or he
has, in effect, “surrendered” some part of the compositional process to a set of
mathematical rules.

The degree to which these rule sets are arbitrary and whether they retain their
initial significance when implemented in constructing a musical surface often provides
the dividing line as to whether music is considered “algorithmic” or not. For example,
we seldom perceive Western Classical music to be algorithmically construed, despite
overwhelming psychoacoustic and theoretical evidence to the contrary (Lerdahl and
Jackendoff, 1983, et al). This is largely due to the evolved nature of the musical idiom,
where our perceptual systems and the musical idiom itself have adapted in a mutually
coherent fashion. Put another way, composers working in the Classical “idiom” were
using basic algorithmic procedures regarding harmonic motion, rhythmic patterning, and
formal organization implicitly (these rules were embedded in the musical discourse, and
as such seldom needed formal justification for their use). Where an extreme break

between a musical form and our prevailing musical perception has occurred (e.g. integral

*> An English scientific term borrowed from a Greek mispronunciation of the surname of
the 9" Century Iranian mathematician Abu Ja'far Muhammad ibn Musa Al-Khwarizmi.

serialism), we are much more likely to construe that music as mathematically induced,
often to the point where we lose interest in it as artistic expression and only derive
stimulation from the work in an intellectual fashion.

The use of explicit algorithms and mathematical models in the construction of
music is, therefore, a risky endeavor at best. With the advent of the digital computer,
many composers have readily committed to the incorporation of abstract mathematical
models into their music. Lejaren Hiller’s Illiac Suite (1957), considered, somewhat
arbitrarily, as the “first algorithmic piece of music” (Chadabe, 1996), in many ways sets
the tone for what has become a slippery slope towards using abstract, non-musical, and
somewhat arbitrary sets of information and equations to generate music. Unfortunately,
the fact that music can be mathematically derived does not necessarily imply that
mathematics makes for good music, using any but the most pedantic evaluation systems.

So what sorts of algorithms make for good music? Theoretical research in music
cognition, psychoacoustics, and contemporary music theory strongly suggests that
musical events are interpreted by the human listener as hierarchical structures, which are
deconstructed on various levels from the musical surface of event streams to the higher-
level perception of musical form, achieved through our musical memory. Various
analytic models are available for discerning these hierarchies, ranging from the
metaphysical (Schenker) to the mathematical (Riemann). One of the most promising
(and logical) theories for deriving musical structure as heard by the listener is based on
linguistics and generative grammar models (Lerdahl and Jackendoff, 1983, Lerdahl,
2001). To turn the tables for a moment, we might posit that algorithmic strategies that

emulate (or, at the very least, take into account) these hierarchical systems (or that

emulate natural hierarchical systems in general) would make good source material for
algorithmic composition.

A further complicating factor in much algorithmic composition is the tendency to
jettison what one would term culturally cohesive musical informatics (e.g. standard
musical forms, common harmonic practice, etc) in favor of arbitrary mathematical-
functional systems. If we take the position that excessive abstraction will make a piece
“sound” algorithmic, we could point out that this is often a matter of how the algorithmic
component of a piece is applied.” For example, using a series of mathematical
ruminations on the Fibonacci series to generate pitched material for piece is not a priori
an overuse of mathematical systems, provided the composer can present this newly
auralized information with a degree of clarity by retaining rhythmic, harmonic, and
formal models which will be comprehensible to the listener. The intrinsic risk of
algorithmic structures within a piece of music is not to misapply them (though “mapping”
is always of primary concern) but to use them everywhere at once.

Any number of solutions have been proposed for creating “complete” systems to
generate musical material using algorithmic procedures. These range from hyper-generic
systemic models (which are often little more than a thin veneer of musical informatics
mapped onto existing synthesis or signal processing languages) to highly idiosyncratic
compositional frameworks, typically developed by a composer or small research group in

response to particular compositional ideas (Oppenheim, 1989, Olafsson, 1988, Hiller and

* The cases for and against the use of algorithmic procedures in music, particularly
electro-acoustic music, have been made many times. For a fairly recent overview of
some of the main perspectives see Computer Music Journal (Volume 25: 1): “Aesthetics
in Computer Music.” The articles by Guy Garnett (“The Aesthetics of Interactive
Computer Music”) and Martin Supper (“A Few Remarks on Algorithmic Composition™)
cover much of the debate.

Baker, 1957). These systems are never as comprehensive as they seem, and are most
often found lacking in their ability to integrate normative music performance practice
(live musicians playing live instruments) into their output.

The advent of fully integrated interactive systems for generating music from the
computer has the potential to solve a major shortfall of algorithmic composition through
the premise of human-machine interaction. Once a human performer is involved, her/his
performative actions can themselves be integrated as agents in an algorithmic context
(Rowe, 2001, Winkler, 1998). If used correctly, real-time music systems can, to some
degree, mitigate against several common by-products of algorithmic procedures in
composition.

Rather than proposing an ideal environment for automatic music composition, I’d
like to explore some ideas about what one such environment might include, by way of
showing one that I’ve used to make some music in the last year. Rather than picking a
particular set of assumptions to use as our algorithmic currency, I'll be exploring an
environment based around a particular class of symbolic systems that can be used for
algorithmic expression. These systems, called L-systems, which rely, incidentally, on a
grammar model of sorts, were never designed to compose music, which makes them a
good candidate for our environment insofar as they lack presuppositions particular to the
musical idiom. The systems themselves can be used to generate compositional output
directly, or to generate input for other algorithmic systems (which may themselves be of
the same typology). The recursive utilization of L-systems allows their incorporation
into a nested series of meta-systems, allowing for simple control access at multiple levels

of the formal hierarchy. Because these systems have very little to do with music, they

can easily be mapped to generate non-musical material that can be linked (through the
grammar model) to the music being generated. Since the systems contain within them no
particular assumptions about musical idioms, or ways in which to map their output, they
demand extensive composer intervention at all levels of the system’s hierarchy.*

We shall begin by describing L-systems and their intended uses. Following on
from a discussion of L-systems per se, we’ll investigate other attempts to integrate them
into music composition, with a discussion of some particular investigative pitfalls
involved in mapping. We’ll then look at potential taxonomies for generating interesting
musical mappings from the system, and discuss how these particular functions can be
implemented in recursion. We’ll then continue on to some of the particular
morphogenetic attributes of the system and how they can be extrapolated algorithmically
to intuit musical factors such as polyphonic density, harmonic navigation, and performer
accompaniment. Finally, some key issues with the implementation of this system as a
real-time software package for interactive computer music will be discussed, along with a
description of one possible package (the Scheherazade software).

In order to begin, however, we have to learn a thing or two about plants.

* We could call this type of algorithmic composition semi-automatic, but we won’t.

2. Lindenmayer Systems

In 1968 a Dutch botanist named Aristid Lindenmayer published a two-part article
in the Journal of Theoretical Biology entitled “Mathematical models for cellular
interaction in development” (Lindenmayer, 1968). The article proposed an axiomatic
system for modeling developmental growth in plants by exploring a class of string-
rewriting systems developed by Lindenmayer, akin to but substantially unique from
Chomsky grammars (Chomsky, 1956). These classes of string-rewriting systems, called
Lindenmayer systems (or L-systems), work on a parallel-substitution string-rewriting
model that can successfully simulate morphogenesis.

Before we delve into the systems themselves, we should look for a moment at the
underlying philosophy behind Lindenmayer’s research. Lindenmayer’s work derives
from the morphogenic theory of emergence in multi-cellular life (Taylor, 1992). Put
simply, emergence is a formal growth process by which “a collection of interacting units
[in a biological entity] acquires qualitatively new properties that cannot be reduced to a
simple superposition of individual contributions” (Prusinkiewicz, Hammel, Hanan, and
Mech, 1996). Lindenmayer was primarily intrigued by the fact that cellular growth,
viewed on any scale, unfolded in a way that defied explanation through the observation
of simple local interactions. In higher-level plants, for example, branching structures
(apices and nodes) conform to highly complex, self-similar patterns, despite the fact that

on a local level there exists no obvious blueprint for such a pattern.'

' Lindenmayer and his colleagues take for granted that such a blueprint does exist as
encoded in the genetic makeup of the organism, but that the work involved in unraveling
even a simple organism’s genetic information to infer spatial data will remain beyond our
means for some time.

A second feature of morphogenesis that Lindenmayer desired to model was the
principle that growth in organisms occurs in parallel steps in discrete bursts of time. A
plant, for example, will develop from a single stem towards a complex matrix of branches
in stages where there is more than one growth development. To thicken the plot even
more, these successive stages of organic growth are, themselves, self-similar, and can
exhibit formal parallels in spatially diverse locations. Furthermore, Lindenmayer wanted
to develop a model which could emulate growth behavior without having to descend to
the cellular (or sub-cellular) level of the organism in question, allowing as a starting point
the smallest relevant unit of organic growth needed to capture the formal aspects of the
organism.

Lindenmayer undertook the task of developing a mathematical formalism that
could extrapolate these patterns from a very small set of initial data. Taking as a starting
point the assumption that an organism begins to exhibit interesting growth from an initial
multi-cellular unit (or state), he developed a set of rules that would operate upon that state
in quantum steps, allowing multiple nodes of cellular growth to occur and interact
simultaneously. The algorithmic principle upon which he based his work was that of
rewriting a string that somehow represented the state of an organism at a given growth
stage.

String-rewriting models (Thue systems, Chomsky grammars, L-systems) all have
in their lineage some form of Turing machine (Turing, 1936), insofar as they incorporate

a one-dimensional (and potentially infinite) array of symbols upon which operations are

conducted using a finite instruction set.” String-rewriting systems can often be used to
simulate Turing procedures, but should not be confused with Turing machines per se (see
Wolfram, 2002). What string-rewriting models add to the table is the mathematical
potential for database amplification, whereby a simple set of initial data operated upon
by a simple set of rules can be used to derive a data set of complexity far exceeding the
initial set provided these rules are applied in recursion.

Whereas all types of Chomsky grammars function by performing string-rewriting
in series (in keeping with Turing’s premise of a single active node), Lindenmayer
systems perform string-rewriting in parallel, simulating successive static states of
evolutionary growth. As a result, they can be used to simulate most classes of fractals
(including the basic Mandelbrot and Julia sets, the Sierpinski triangle, and other common
spatial models that exhibit self-similarity). In this sense, L-systems exhibit a typology
more akin to string-substitution (where the entire string is replaced), rather than simple
rewriting.

Since the premise of our algorithmic composition system is based on functional
applications of L-systems, we’ll begin with a primer on their composition and look at

some of their features.

Overview of L-systems
Lindenmayer systems work by performing replacement operations on a string of symbols.

While the actual symbols used are completely irrelevant as far as the system is

*“Symbols” in Turing machines are represented as binary “states” for the machine.
There are many on-line resources that explain Turing machines, and their underlying
theory of computational modeling (the “Church-Turing Thesis”). A good place to start is
to go to www.alanturing.net.

10

concerned, by convention L-system designers usually stick to letters of the alphabet and
other common ASCII symbols (some of which have special significance in specific L-
systems interpreters).

Each character space in the string is usually initialized to a null or neutral value,
which defines that space in the string as “empty” (i.e. a symbol that has no relevance in
the system, often a “space” character or a full stop). At the beginning of the string a
starting symbol or set of symbols is inserted.” This primer string is referred to in L-
systems parlance as the axiom of the system. The axiom is often denoted by an omega
().

The length (or size) of the string at any given state is always defined as the
distance from the starting point of the string to the last non-empty symbol (i.e. the string
is always null-terminated). Computer applications of L-systems typically demand that
the current string is stored in an array of computer memory; rather than resizing the
memory every time the string grows, an arbitrarily high limit is imposed on the length of
the string, which has nothing to do with the actual length of the string at any moment.

Once the axiom is defined, sets of rules are fed into the system to determine how
symbols are substituted as the system runs. These rules are called productions, and take
the form of a predecessor symbol and a successor string (which can be of any length). If
a symbol in the string matches a predecessor, it is replaced by the appropriate successor
for that production rule. If a symbol fails to match any of the production predecessors in
the system, it is simply copied to the appropriate place in the output string. All symbols

in the current string are substituted simultaneously. The output (or production) string can

’ By convention, Lindenmayer strings always read left-to-right sequentially.

11

then be fed back into the system, becoming the input string. The L-system can then run
again, resulting in an additional generation of the system.
For example, if our L-system contains the following information (taken from

Prusinkiewicz and Lindenmayer, 1990):

: B
pl: B -> A
p2: A -> AB

Figure 2.1: a simple L-system definition
Our system starts with a single symbol as its axiom: the letter B. Our production
rules dictate that every instance of B in the string is replaced with the A, and every
instance of A is replaced with the string AB.
The first five generations (including the axiom) of our string would look like this:
B
A
AB
ABA

ABAAB
ABAABABA

Figure 2.2: the first five generations of the L-system in Figure 1.1

It’s important to reiterate at this point that the string is substituted all at once, with
each character in the input string checked against all the productions in the system.
Modeled computationally as a set of operations on a numerical array, we compute an L-
system by scanning the input array one character at a time, placing its substitution string
into an (initially empty) output array. Since the production rules often dictate that a
successor contains multiple symbols, the write pointer on the output array is by necessity
decoupled from the read pointer on the input array (see Appendix: jit.linden.c). Putin

simpler terms, the output string is written from scratch, unlike the production rules for

12

Chomsky grammars, where the string is rewritten in place, allowing production rules to

influence each other depending on the order in which they are applied. This parallel

substitution process is the main attribute of L-systems that makes them useful for

modeling growth in organisms.

We can note a few things about this particular L-system to arrive at some

additional formal definitions.

The L-system denoted above is deterministic. There is no ambiguity in how it
will run given any input string.

Our L-system has no notion of context. “A” substitutes for “B”, regardless of the
symbols surrounding it on either side.

Our L-system shows a remarkable amount of self-similarity, reflecting the
recursive nature of the substitution algorithm. This self-similarity is a primary
feature of Lindenmayer topology that allows L-systems designers to create
complex fractal growth structures with a very simple set of rules.

Our L-system exhibits a general feature of string-substitution algorithms that
swap single symbols for words (collections of symbols), which is that they grow
in size with every generation of the system. In fact, if the production rules
interact (i.e. they share symbols), the system will exhibit an exponential growth if
any of the production rules have multi-symbol successor strings. String-
substitution models that match a multi-symbol predecessor against a smaller
successor string fall outside classic Lindenmayer topology, but are commonplace

in algorithmic models for dynamic physical systems such as condensation.

13

. Axiomatic to the prior note is the observation that the size of our L-system will
eventually approach an infinite limit (this is a well-understood byproduct of
systems that perform database amplification). As a correlate, the number of
computations required to formulate an output string will increase proportionately
with the amount of memory (storage) the string demands. As a result, it’s usually
appropriate to constrain or predetermine the number of generations the system
produces in any given run in order to properly allocate computation time and
storage needs.

A Lindenmayer system that is deterministic and substitutes symbols regardless of

symbolic context is referred to as a DOL-system (D for deterministic, 0 to denote that the

system is context-free). The use of parametric Lindenmayer typologies (where the
outcome of the algorithm is not always deterministic) and context-dependent L-systems

will be discussed later as we investigate mapping strategies for algorithmic composition.

Turtle graphics and branching

Because the symbol topology of L-systems, like Chomsky grammars, is
semantically agnostic, much of the developmental research into L-systems design has
been over how to interpret the strings created by the algorithms. Since the system was
developed to explore morphogenetic processes, a cohesive visualization scheme was
needed to make the strings comprehensible. In early experiments, Lindenmayer
translated the alphabet of his strings into geometric primitives, where letters denoted lines
of varying length and bearing. Following subsequent experiments by early L-systems

designers (Szilard and Quinton, 1979), Przemyslaw Prusinkiewicz eventually settled on

14

the use of a LOGO turtle interpreter as the best-suited visualization mechanism for L-
systems (Prusinkiewicz, 1979).

The meta-language of “turtle graphics,” developed at MIT by artificial
intelligence pioneer Seymour Papert and initially implemented in LOGO (Minsky and
Papert, 1969), interprets single symbols as instructions for a virtual drawing implement,
called a turtle. The metaphor of the language is that a virtual “turtle” exists in a two- or
three-dimensional space, and can secrete ink from its tail to create a persistent image.
The original instructions for the LOGO interpreter were adapted by Prusinkiewicz to be
represented by single symbols generated by an L-system.

The initial instruction set for the turtle consisted of four reserved symbols, which

were to be generated by L-systems to create visual patterns:

F Move forward a discrete amount, drawing a straight line from the turtle’s
previous location.

f Move forward a discrete amount without drawing.

+ Turn left a fixed angle, while staying in place (pivot left).

- Turn right a fixed angle, while staying in place (pivot right).
Figure 2.3: Turtle Graphics: simple instruction set, after Prusinkiewicz, 1979

The distance covered by forward motion (d, typically denoted in pixels) and the
size of the angle used in each turn (4, defined in angle degrees) were determined at the
initializing stage of the LOGO program. The “handedness” of turtle interpreters (i.e.
whether + means turn left or right) differs among turtle implementations, and is often
user-defined.

For example, to draw a square thirty pixels on a side, we would initialize our
turtle to [d = 30, 8 = 90] and feed it the instructions F+F+F+F (draw, turn left, draw, turn

left, draw, turn left, draw).

15

While turtle graphics interpreters are not the only way to visualize L-systems
(we’ll look at an example of “direct” string interpretation later when we consider cellular
automata algorithms as a class of L-systems), they have the advantage of being
computationally efficient and easily implemented.

By incorporating our turtle instruction set into our L-systems alphabet, we can
derive complex self-similar images very quickly. For example, the following L-system
will generate a quadratic Koch island (Mandelbrot, 1982):

: F+F+F+F
pl: F -> F+F-F-FF+F+F-F

Figure 2.4: an L-system definition of the quadratic Koch island
Below are the first four generations of this L-system (including the axiom), drawn
using a simple turtle program with 90-degree turning angles. For clarity, the size of the
drawing is reduced to 25% of its original size with each generation, and the interior of the

generated polygon has been filled with grey.

Figure 2.5: generations 0-3 of the Koch island as rendered by Jitter, with =90 and d=256, 64, 16, and 4,
respectively

16

Additional extensions to the turtle interpreter were implemented to help visualize
the notion of branching in L-systems. In order for L-systems to correctly model the
growth of higher plants and other multi-cellular organisms, an extension to the
visualization system was needed to accommodate the principle that certain self-similar
units within the Lindenmayer string would exist as branches, or offshoots, off of the main
trunk of the organism. These branches could be nested, so that multiple “fractal” images
could project off of a similar image without forcing the visualized system to retain the
shape of a simple polygon.

The symbols “[* and “]” were added to the turtle lexicon to denote the start and
end points of branching structures. In the turtle implementation, this meant that each
branch (and each sub-branch) had its own notion of geography. When a branch ends, the
turtle’s position and orientation makes a quantum jump back to where it was before the
branch started (see Appendix: max.jit.turtle.c).

In addition to branching symbols, additional symbols can be added on an ad hoc
basis to any given turtle interpreter. In the example below, we’ve added the letter “c” to
the turtle instruction set to denote a change of the turtle’s drawing color from among
eight different shades of green. This L-system also includes a symbol (“X”) that is

integral to the system’s evolution but ignored by the turtle interpreter (a common

occurrence in L-systems design).

: X
pl: X -> F-[[X]+cX]+F[+FcX]-X
p2: F -> FF

Figure 2.6: an L-system definition of Luke’s hypothetical fern

17

Figure 2.7: generations 0-5 of Luke’s hypothetical fern rendered by Jitter (0=16 and d=96, 48, 24, 12, 6,
and 2, respectively)

By adding branching structures to L-system design, we can create self-similar
textures that evolve independently from the overall shape (or trunk) of the system.
Further turtle interpreter symbols have been added to plot graphics in 3 dimensions
(Prusinkiewicz and Lindenmayer, 1990). While the rest of our investigation will discuss
Lindenmayer string interpretation outside of the realm of turtle graphics, spatial
metaphors in L-system interpretation (turns, branching, etc.) can be a good source of

inspiration when we decide on mapping strategies for music.

18

Lindenmayer Systems and music: prior art

A number of attempts have been made to integrate L-system methodologies into
the composition of music. Most of the compositional work in this area has followed as a
natural extension to algorithmic composition using fractals. A number of electronic
pieces by Charles Dodge (“Profile”, “Viola Elegy”) implement compositional strategies
that trace the geometric progression of fractals mapped onto a microtonal pitch hierarchy.
Similarly, Dodge’s piece “Earth’s Magnetic Field” (Dodge, 1987) uses atmospheric
magnetism readings as a source data set for the composition; since atmospheric and
geological data tends to exhibit substantial self-similarity, this piece reflects some fractal
qualities of the source material.

Przemyslaw Prusinkiewicz proposed one potential strategy for composing music
using L-systems in a paper given at the 1986 International Computer Music Conference.
The paper, entitled “Score Generation with L-systems” (Prusinkiewicz, 1986) has had
some impact on a number of composers working with algorithmic composition, notably
Gary Lee Nelson, who had been working with fractal music for some time. Their
findings have been integrated into a number of software packages, such as David Sharp’s
LMUSe software (1995) and the Isys2midi project (Goodall and Watson, 1998).

Prusinkiewicz’s system, and by extension Nelson’s music and the software cited
above, works by performing a spatial mapping of the L-system output. The L-system
output string is first drawn using a turtle interpreter; the resulting geometric shape is then
traced in the order in which it was drawn, with the different dimensions of the shape
mapped to musical parameters (normally pitch height and amplitude). Each forward

movement of the turtle pen along the x axis represents a new note of a fixed metric

19

duration, with multiple forward movements in the same direction (with no intervening
turns) represented as notes of longer duration. A movement along the y axis merely
changes the pitch of subsequent notes along a musical scale. A musical evaluation of

generation 1 of the Koch island shown above (Fig. 2.5) could look something like this:

| 1HER

& - o &

| THER
N
| 1HER
| JHEE
N

I T
I I
JI- =

b Ol

i
i

QL

Figure 2.8: generation 1 of the Koch island realized using Prusinkiewicz’ spatial mapping

Gary Nelson’s “Summer Song” (1991) and “Goss” (1993) were both composed
using a slightly expanded version of Prusinkiewicz’s methodology that took into account
angled lines (realized as glissandi) and the possibility of “warping” the shape output by
the turtle interpreter using non-standard values of 8. Nelson also realized note duration
differently, by computing spatial distance between the vertices that represented the
beginning of lines realized as notes.

Other composers have taken similar approaches to spatial mapping of fractal
algorithms (including L-systems). Both Stephen Travis Pope and Curtis Roads have
incorporated the mapping of fractal systems into their music (Pope, 1987, Roads, 1987).
Roads’ granular synthesis pieces, in particular, extend the system to the realm of
“microsound” (Roads, 2002), where fractal patterns are used to trace the shape of
acoustic phenomena in synthesis algorithms, such as the envelopes and waveforms of
individual sonic events. By applying such spatial metaphors directly to timbre, Roads
has acquired a vocabulary for generating interesting sonic results that take advantage of
the potential for self-similarity in L-systems; when mapped to the shape of a waveform,

for example, repetitive or fractal patterns become salient as harmonic periodicities in the

20

signal, creating different spectra through different L-systems. Michael Gogins (1998) has
done a number of compositions taking the mapping to fractal patterns to all aspects of a
musical composition, effectively creating a self-contained musical vocabulary based
entirely on spatial mapping strategies.

Prusinkiewicz also states in his paper that branching in the L-system string could
be represented by musical polyphony. Though he doesn’t give any examples, one could
easily imagine a mapping wherein branches above and below a certain spatial area could
be represented as harmony lines to an original melody represented by the “trunk™ of the
drawn L-system. Both LMUSe and Isys2midi interpret branching as jumps upward and
downward to different levels of harmony in musical thirds (similar to chord extensions in
jazz); a forward motion four branches away from the main trunk of a system would
therefore be realized as a ninth above the main harmony note.

To summarize, Prusinkiewicz’ musical interpreter looks something like this:

Axiom (fixed)

Y

Feedback

stage (fixed Lindenmayer interpreter
number of

generations)

Lindenmayer string

Y

Turtle graphics interpreter

/ Vector graphics data
Y
Visual output

(image) Musical interpreter
(spatial mapping)

Musical data (MIDI, etc.)
Y

Musical output (score)

Figure 2.9: Flowchart of the Prusinkiewicz’ interpreter

21

While this form of direct spatial mapping can generate some interesting results, it
fails to provide substantial musical functionality in a number of ways:

. By using a fixed axiom, a fixed interpreter, and a finite (and predetermined)
number of iterations of the L-system, the result of the string substitution run will
always be the same. As a result, the composer is forced to work with a fixed body
of data for musical interpretation over the course of a piece. By making the
axiom and L-system rules flexible, and by varying the number of passes
performed on the string, we can vary the output dynamically to generate more
formally interesting results.

. More importantly, the use of a strict spatial mapping effectively negates much of
the flexibility inherent in Lindenmayer’s string-rewriting model. In effect,
sticking a turtle interpreter in the middle of the chain seriously undermines the
idea that the symbols in L-system topography are arbitrary, and can represent any
type of data. We are forced instead into the presupposition that the L-system
string is always tied to a spatial metaphor, with all the limits that metaphor
imposes in terms of dimensionality and linear contour. This in turn severely
restricts our ability to map the symbols in an expressive (and musically
interesting) fashion.

In the following chapters, we’ll explore a way of interpreting L-systems musically that

avoids some of these pitfalls. We’ll attempt to describe a potential system which

generalizes many of the points in Prusinkiewicz’ methodology; in a number of instances,
we’ll jettison his ideas (such as reliance on a turtle interpreter) altogether. The basic

outline of one possible configuration for a generalized musical system is shown below:

Musical input {performer/score)

v

Acoustic preprocessor (if
necessary)

:

]

Symbolic preprocessor
(musical information IN,
symbuolic information OUT)

Score following system (exerts
changes to the system based
on performance and timeling)

[

| Axiom (vanable
Y

Feedback

Lindenmayer interpreter
(variable)

MNew rules

Lindenmayer

string MNew mappings

—~_

Parametnc instructions

L

‘ Turtle graphics interpreter Musical interpreter
| (multiple mappings)

* Vector graphics data

Visual output
(image)

=

Y

Signal processing
madule
(accompaniment)

N

Musical output (sound)

Synthesis module
{accompaniment)

Figure 2.10: A flowchart of a more general system, including decoupled musical and graphical interpreters,
a score follower, and the potential for live performer interaction

The system outlined above, which we’ll use as a starting point for exploring
different interpretation schemes in the next chapter, contains a number of improvements
over the previous system in terms of its flexibility. Most notably:

The turtle graphics interpreter is decoupled from any interaction in the musical
process. In fact, we could even omit it entirely. If we still desire a spatial
mapping of the L-system, we can introduce rules into the musical interpreter
module (now a separate entity) that mimic the graphical behavior of the turtle.
This is both more flexible and more efficient: we no longer have to interpret the

turtle’s moves on a graphical surface to infer musical data; we can derive that data

23

directly from the Lindenmayer string by interpreting symbols as cogent musical
information.

. A score following module is added to the system, allowing the interpretation
(both within the Lindenmayer rule set and within the musical mapping system) to
change over time, in response to a formal timeline or in reaction to performer
input (see below). This eliminates any restrictions on musical output that are
asserted by using the same set of rules over and over again throughout a piece.

. Our system replaces a set axiom with symbolic information supplied by a human
performer (or, for that matter, a computer performer). A composer can supply the
performer with a score, improvisational guidelines, or a set of rules that she or he
can then use to input a stream of variable data into the system. As a result, the
music generated by the system no longer depends on the Lindenmayer rule set as
the sole variable factor. This addition alone allows much more flexibility than
before. In addition, the performer can exert control over the score following
mechanism, which can change the rules applied to the performer’s input.

. The output of the system is no longer constrained to a simple stream of
algorithmically generated music. Our network can supply musical
accompaniment in the form of synthesized sound, or it can use the L-system
output as symbolic instructions to perform manipulations on the performer’s

input, allowing for a much more creative mapping environment.

In the next chapter, we’ll explore some different strategies for encoding and

interpreting musical information as symbols for use in L-systems. We’ll also explore

24

different mapping strategies, taking advantage of the flexibility inherent in the grammar

model to show some interesting uses of string-substitution as a compositional tool.

25

3. Mapping and Rewriting Schemes

Now that we’ve explored some of the basic principles and features of
Lindenmayer systems, as well as a few of the ways in which the systems are commonly
visualized, we can look into possible ways in which we can use the data from L-system
interpreters to generate and interpret musical information.

Throughout this chapter (and into the next) we’ll be spending the bulk of the
discussion focusing on issues of musical mapping. With the incorporation of digital
computers into the compositional process, the way in which a set of non-musical
information is interpreted in an acoustic context is possibly the most important decision a
composer can make in a given piece. Depending on the quantity, dimensionality, and
polyphony (in the sense of discrete streams) of the data, the ramifications of how
numbers are mapped to musical and sonic output can greatly influence the aesthetic
impact of an algorithmically conceived piece of music.'

For the purposes of our investigation an important distinction needs to be made
between “external” and “internal” mapping, or “ergonomic mapping” and “transcoding.”
Ergonomic mapping, which we’ll describe first to briefly introduce the concept of
mapping as a whole, is the process by which physical events are translated into
instructions for the computer program. These events occur external to the system and, as
a result, need to be treated with very few suppositions as to their raw content. For
example, a computer program that claims to deduce the pitches of a musical performance,

but only works reliably if the performer plays perfectly in tune at all times, would be next

' For a good overview of some of the main issues in mapping in interactive music, see
Paradiso, 1999.

26

to useless, since it makes an assumption about the incoming data stream (the sound
generated by the performer) that can’t be maintained in all conditions.

Internal mapping, or data transcoding, occurs when a set of data with a known
vocabulary (an L-system, for example) is “mapped” onto one or more output parameters.
In this case, restrictions can be placed on both the incoming data and the outgoing
information in such a way that it is reasonably easy to create deterministic results. While
the rest of this chapter will focus on internal mapping schemes, some ideas on external
mapping are useful to introduce the subject.

A great deal of the relevant discourse vis-a-vis musically cogent mapping exists in
research being done in the field of human-computer interface (HCI). HCI researchers
and developers, whether working within industry, academia, or from the point-of-view of
independent software and hardware developers, are constantly grappling with ways in
which ergonomic events generated by a human are to be mapped to corresponding
actions by a computer (Johnson, 1997). A number of standard theories for HCI mapping
exist, ranging from experimental research done at Xerox PARC to the Human Interface
Design (HID) standard developed over the years by Apple Computer. Most current HCI
theories manifest themselves as suggested guidelines by which software developers are
expected to map common human actions on computer peripherals (mouse clicks,
combinations pressed on computer keyboards) to a set of standard actions on the
computer. Any reasonably computer-literate person will find a summary table of just a

few of these mappings immediately familiar:

Human Task Computer Response
Double Click (mouse) Open document; execute command immediately
Click and drag (mouse) Move selected item to the area indicated

Modifier-O (key) Open document

27

Modifier-P (key) Print document
Modifier-S (key) Save document
Modifier-Q (key) Quit current program
Modifier-Z (key) Undo last action
Modifier-X (key) Cut selection
Modifier-C (key) Copy selection
Modifier-V (key) Paste selection

Figure 3.1: Some common HCI mappings used by most personal computer (PC) operating systems

As the interface increases in complexity, so must the mapping scheme. With the
creation of digitally interfaced musical instruments in the 1980’s, HCI researchers at
digital instrument manufacturers were faced with the task of mapping simple and
deterministic human gestures to a sonic output. Most manufacturers, following the path
of least resistance, simply copied the physical attributes and layout of traditional Western
musical instruments (e.g. pianoforte-style keyboard designs, Boehm fingering layouts for
wind instruments). These design and mapping decisions were taken largely to encourage
acoustic performers to transition to electronic instruments. With the advent of custom-
built musical interfaces and the creation of real-time tools to address musical interfaces
(including normal acoustic instruments) in a more flexible manner, the issue of mapping

is, once again, a relevant topic for composers working with live instruments.’

* Interestingly, the age of pre-digital electronic instruments saw in many ways the most
innovation in ergonomic mapping for the musical performer. Anyone familiar with the
theremin, which remains the only widely used instrument ever designed that gives no
haptic feedback to the performer, will agree that most digital instrument designers in the
last quarter-century have completely failed to think outside the box on this issue. Much
of this debate has, however, centered on economic, rather than ergonomic, concerns. The
dividing line in analogue synthesis systems between synthesizers with keyboards (e.g.
Moog systems), and those that featured control surfaces with arbitrary tunings (e.g.
Buchla and Serge systems) is well documented; the fact that the latter sold a fraction as
well as the former is often overlooked. See Theberge, 1997 for more on the history of
digital instruments and musical controllers.

28

If we define ergonomic mapping as how we get information into a digital system,
we can define transcoding as mapping that occurs within the digital domain. We can now
look at some internal mapping strategies, with the goal of transcoding information from
Lindenmayer systems into musically useful material. What follows are some examples
of ways to take the symbolic information contained in a Lindenmayer string and extract a
musical texture that somehow retains some of the interesting features of the string as

musically coherent phenomena.

Event-literal symbolic mapping

As we mentioned in the last chapter, the typical strategy for generating a musical
texture from a Lindenmayer string has been to rely on the spatial information generated
from a turtle graphics interpreter to generate a suitable musical mapping. While this can
generate interesting musical material, a more rewarding line of enquiry might involve
looking into the grammar model itself and finding ways to map the symbols contained in
the L-system, treating a graphical representation of the string, if any, as a separate and
complementary process.

A simple (and reasonably-straightforward) system for mapping L-systems into
musical data is to treat the individual symbols in a Lindenmayer string as discrete musical
events. An event-literal mapping, where each symbol represents a particular musical
datum, is most easily accomplished by treating the string as a temporal stream, with the
musically mapped symbols following one another in the time domain. This has a number
of advantages insofar as it maintains the /inearity, or perceptual one-dimensionality, of

the L-system string.

29

For an example, we could revisit our first Lindenmayer system, defined in the

previous chapter:

: B
pl: B -> A
p2: A -> AB

Figure 3.2: a simple L-system
The eighth generation of this particular L-system results in the following string:
ABAABABAABAABABAABABAABAABABAABAAB
Figure 3.3: generation 8 of the L-system in Figure 3.2
Perhaps the simplest conceivable mapping of this L-system into an event-literal
stream would be to pick a metric value, and substitute all the instances of the letter ‘A’
with a note at that value, with instances of ‘B’ becoming rests. A realization of this

mapping (without superimposing a meter) could yield something like this:

Figure 3.4: generation 8 of the L-system in Figure 3.2, realized as sixteenth notes (‘A’ = note; ‘B’ = rest)

Even with a trivial mapping, some of the features of this L-system become salient when

treated as musical information, e.g.:

o ‘B’ never occurs more than once in a row. Hence, our maximum rest value in our
musical stream will never exceed the base metric value of the mapping (in this
case, a sixteenth note).

o ‘A’ never occurs more than twice in a row. It also never occurs once in a row, if
you will, more than once in a row, i.e. the substring ‘BAB’ only occurs when
surrounded by the substring ‘AA’ on both sides. As a result, our rhythmic texture

is limited to two patterns.

30

or .

Figure 3.5: rhythmic palette of the musical stream in Figure 3.4

. The above will remain true regardless of which generation of the L-system we use
to generate the musical stream.
Because of the limited alphabet of our L-system (number of symbols), and the modest
scope of our production rules, the string generated by our L-system consists solely of a
finite number of local substrings, which remain constant in character and relative
frequency. While this is all very interesting, this particular combination of Lindenmayer
system and mapping strategy is probably unsuitable for the generation of musical
material beyond that of a motivic fragment.’
For a more complex and potentially interesting example of literal mapping, we

could examine the Lindenmayer system shown before in Figure 2.6:

: X
pl: X -> F-[[X]+cX]+F[+FcX]-X
p2: F -> FF

Figure 3.6: the L-system for Luke’s hypothetical fern
In this case, the fifth generation of the system yields an incredibly complex string

of nearly 32,000 characters in length. The first 2,000 or so are shown below.

FFFFFFFFFFFFFFFF-[[FFFFFFFF-[[FFFF-[[FF-[[F-[[X]+CX]+F[+FcX]-X]+CF-[[X]+CX]+F[+FcX]-X]+FF[+FFcF-
[[X]+cX]+F[+FcX]-X1-F-[[X]+cX]+F[+FcX]-X]+cFF-[[F-[[X]+cX]+F[+FcX]-X]+cF-[[X]+cX]+F[+FcX]-
X]+FF[+FFCF-[[X]+CX]+F[+FcX]-X]-F-[[X]+CX]+F[+FcX]-X]+FFFF[+FFFFCFF-[[F-[[X]+cX]+F[+FcX]-X]+cF-
[[X]+cX]+F[+FcX]-X]+FF[+FFcF-[[X]+cX]+F[+FcX]-X]-F-[[X]+cX]+F[+FcX]-X]-FF-[[F-[[X]+cX]+F[+FcX]-X]+cF-
[[X]+cX]+F[+FcX]-X]+FF[+FFcF-[[X]+cX]+F[+FcX]-X]-F-[[X]+cX]+F[+FcX]-X]+cFFFF-[[FF-[[F-
[[XT+cX]+F[+FcX]-X]+cF-[[X]+cX]+F[+FcX]-X] +FF[+FFcF-[[X]+cX]+F[+FcX]-X]-F-[[X]+cX]+F[+FcX]-X]+cFF-
[[F-[[X]+cX]+F[+FcX]-X1+cF-[[X]+cX]+F[+FcX]-X]+FF[+FFcF-[[X]+cX]+F[+FcX]-X]-F-[[X]+cX]+F[+FcX]-
X]+FFFF[+FFFFCFF-[[F-[[X]+CX]+F[+FcX]-X]+CF-[[X]+CX]+F [+FcX]-X]+FF[+FFCF-[[X]+CX]+F[+FcX]-X]-F-
[[X]+cX]+ F[+FcX]-X]-FF-[[F-[[X]+cX]+F[+FcX]-X]+cF-[[X]+cX]+F[+FcX]-X]+FF[+FFcF-[[X]+cX]+F[+FcX]-X]-F-
[[X]+CX]+F[+FcX]-X]+FFFFFFFF[+FFFFFFFFCFFFF-[[FF-[[F-[[X]+cX]+F[+FcX]-X]+cF-[[X]+cX]+F[+FcX]-

’ However, we could easily incorporate a formal meta-structure that would vary the
production rules of this L-system over time, generating a different vocabulary of rhythms
as the piece progresses.

31

X]+FF[+FFcF-[[X]+cX]+F[+FcX]-X]-F-[[X]+cX]+F[+FcX]-X]+cFF-[[F-[[X]+cX] +F[+FcX]-X]+cF-
[[X]+CX]+F[+FcX]-X]+FF[+FFcF-[[X]+cX]+F[+FcX]-X]-F-[[X]+CX]+F[+FcX]-X]+FFFF[+FFFFCFF-[[F-
[[XT+cX]+F[+FcX]-X]+cF-[[X]+cX]+F[+FcX]-X]+FF[+FFcF-[[X]+cX]+F[+FcX]-X]-F-[[X]+cX]+F[+FcX]-X]-FF-[[F-
[[X]+cX]+F[+FcX]-X]+cF-[[X]+cX]+F[+FcX]-X]+FF[+FFc F-[[X]+cX]+F[+FcX]-X]-F-[[X]+cX]+F[+FcX]-X]-FFFF-
[[FF-[[F-[[X]+cX]+F[+FcX]-X]+cF-[[X]+cX]+F [+FcX]-X]+FF[+FFcF-[[X]+cX]+F[+FcX]-X]-F-[[X]+cX]+F[+FcX]-
X]+cFF-[[F-[[X]+cX]+F[+FcX]-X]+cF-[[X]+cX]+F[+FcX]-X]+FF[+FFcF-[[X]+cX]+F[+FcX]-X]-F-
[[X]+cX]+F[+FcX]-X]+F FFF[+FFFFcFF-[[F-[[X]+cX]+F[+FcX]-X]+cF-[[X]+cX]+F[+FcX]-X]+FF[+FFcF-
[[XT+cX]+F[+FcX]-X]-F-[[X]+cX]+F[+FcX]-X]-FF-[[F-[[X]+cX]+F[+FcX]-X]+cF-[[X]+cX]+F[+FcX]-X]+FF[+FFcF-
[[X]+cX]+F[+FcX]-X]-F-[[X]+cX]+F[+FcX]-X]+cFFFFFFFF-[[FFFF-[[FF-[[F-[[X]+cX]+F[+FcX]- X]+cF-
[[X]+cX]+F[+FcX]-X]1+FF[+FFcF-[[X]+cX]+F[+FcX]-X]-F-[[X]+cX]+F[+FcX]-X]+cFF-[[F-[[X]+cX]+F[+FcX]-
X]+CF-[[X]+CX]+F[+FcX]-X]+FF[+FFCF-[[X]+cX]+F[+FcX]-X]-F-[[X]+CX]+F[+FcX]-X]+FFFF[+FFFFCFF-[[F-
[[XT+cX]+F[+FcX]-X]+cF-[[X]+cX]+F[+FcX]-X]+FF[+FFcF-[[X]+c X]+F[+

Figure 3.7: opening segment of generation 5 of Luke’s hypothetical fern

In this example, a number of factors make this a potentially interesting candidate
for direct mapping. For one, it has a greatly expanded alphabet consisting of the symbols
{F, +, -, [,], ¢, X}. While this alphabet was obviously selected to make it compatible
with a turtle interpreter, we could map this system by creating a transition table of pitches
to correspond to each symbol. In the piece Growing Pains (see Scores), this string is
partially realized by literal mapping, using different symbol-to-pitch mapping sets in
different sections of the piece according to the following table. In all sections of the
piece, the symbol ‘X’ is interpreted as a rest, reflecting its use as metadata in the string (it
has no effect on the turtle interpreter, either). The letter ‘P’ is used to denote that a
particular pitch is used as a pivot note, instructing the computer that the performer is
transitioning to the next section; however, the pivot pitch is always the pitch class
represented by ‘F’ in the subsequent section, and represents that symbol in the mapping

in all other respects.

32

| Sectlon Letter (Symbel Mapping

Plteh Clazs A B [T b |E F] H I
[|F .[[- ‘{F']I |F c [
c#/bb1 |] [1 1|
D2 11 1 + |+ 1] [[+
D#/Eb 3 (P} |F 1 1 (P} |F |
E 4 [| I - 17 [F |-
FS I+ = I+ L |+ ||
F£/Gb B | [+ | | 1 + |
G7 | (P [F |c |- [+ L=
G#/Ab B I i T SO | |
AS e | c [(PIF e |- |(P)|F
A%/Bb 10 [e |1 e |11 Il =
B11

Figure 3.8: pitch mapping of Lindenmayer symbols in Growing Pains

Using this mapping scheme, the literal translation of symbols to pitches exposes
some of the interesting features of our L-system. For example, the fifth generation string
contains a number of substrings that recur, but unlike our first example, these recurring
patterns are followed by a variable amount of transitional material that changes
throughout the piece.

One of the most common substrings we find in the L-system for Growing Pains is
F-[[X]+cX]+F[+FcX]-X]+. This seems logical, since (except for the last two symbols) it
matches the production successor for the symbol ‘X, indicating that ‘X’ was there in the
previous generation. In the first two thousand symbols alone (shown above), it occurs 48
times! This central melodic ‘riff” appears with different pitch mappings in the piece,

depending on how we have the symbols mapped. In sections A and F, it appears in the

SCore as:
Mandolin (9 > .!j Ir h i. .; i il = !' .!j —— .!,,' ll
v & be = L2 L2 R - L4

Figure 3.9: the string F-[[X]+cX]+F[+FcX]-X]+ in sections A and F

33

In sections B and H, it appears as:

Mandolin p 3 be— —] L o ;' EE ﬂ

T Y
iy | | | heg ¥ il i Ll |
e 3 7 -* v T | i 7

|
-“I— 'IL - L d

Figure 3.10: the string F-[[X]+cX]+F[+FcX]-X]+ in sections B and H

~

| 158
L 100

i
=
L

And so on.
Somewhat underwhelming is the fact that the same string, realized as graphics

through the turtle interpreter, yields the following:

Figure 3.11: the string F-[[X]+cX]+F[+FcX]-X]+ realized by the turtle from an original heading of north
This particular string represents the basic graphic primitive of the fern (a slightly

crooked branch). This example exhibits a weakness in our mapping methodology insofar
as its link with the turtle interpretation. Our decision to map every symbol in our L-
systems alphabet to a discrete musical event has created a disparity between the musical
mapping and the visual mapping.* Even though the music and the graphics are separate
processes, we need to remember that much of our L-system alphabet represents “silent”
instructions for the graphics parser (e.g. turn left, turn right, etc.). In fact, the only
symbol that causes the turtle to actually do anything is ‘F’. The rest of the time, our
graphics system is simply making internal adjustments to its algorithm. Keeping that in

mind, we could easily reduce this entire string to a single musical event (such as a three-

* This will inevitably happen when two different parser typologies are used for the sound
and the graphics. A parser that uses metadata (turtle graphics) for the image and a parser
that directly evaluates every symbol for the music will not necessarily correlate as well as
we might like, simply because they have different ‘active’ and ‘passive’ symbols.

34

note motif to accompany the three instances of ‘F’ in the string), and still have it retain its
salience when the music and graphics are generated in tandem.

An event-literal mapping can generate interesting musical material with little pre-
compositional effort. By using a more complex mapping (where symbols are substituted
by chords, rhythmic passages, etc.) a cohesive stream of musical information can be
obtained that adequately reflects many of the self-similar features (such as repeating cells
and alternating patterns) that are the primary salient features of many Lindenmayer
systems. In general, however, we might want to consider incorporating this mapping
technique into a more robust body of mapping schemes, which interprets the symbols not

as discrete agnostic phenomena, but as pieces of a larger formal context.

Spatial symbolic mapping

Another possible scenario for mapping Lindenmayer strings into musical data is
to treat the string itself as a type of musical space. The idea is to treat each generation of
the L-system as a separate sonic texture, with some sort of system in place to realize the
texture and interpret between successive generations of the grammar model (as opposed
to our event-literal examples, which focus only on one particular generation of an L-
system at a time).

An easy way to visualize how this would work is to take a class of Lindenmayer
systems called context-dependent, or 2L systems. These systems work in the same way
as context-free models, with the added caveat that substitution of a predecessor symbol
for a particular substitution string depends on the symbols surrounding that predecessor.

For example:

35

w: BAB

pl: AB -> BA

p2: A<A>B -> AB

p3: A<A>A -> B

p4: B<A>* -> AA

Figure 3.12: a context-dependent L-system
This L-system defines the following production rules, given the axiom ‘BAB’. If

the symbol ‘B’ is found in the string, it is replaced with the string ‘BA’ only if the symbol
immediately preceding the ‘B’ is ‘A’, and the symbol following the ‘B’ is also ‘B’. The
symbol ‘A’ is replaced depending on its context as well: if the ‘A’ is preceded by another
‘A’, it is substituted by the string ‘AB’ if the symbol after it is ‘B’; if the following
symbol is another ‘A’ (i.e. three ‘A’s in a row), then it is replaced by a ‘B’. Finally, a
symbol ‘A’ preceded by a ‘B’ and followed by anything (denoted by the wildcard
symbol, ‘*”) is replaced with the string ‘AA’.> The first five generations of this L-system
(including the axiom) look like this:

BAB

BAAB

BAAABB

BAABABBAB

BAAABBAABABAAB

BAABABBABAAABBAABAAABB

Figure 3.13: the first five generations of the L-system in Figure 3.12
We could attach a simple musical mapping to this string as follows: let every

symbol represent a semitone above a starting pitch (say C 3, with the first symbol in the

string representing that note as a root of sorts). The letter ‘B’ represents a note at that

> It’s important to note that the ordering of the production rules is important when using
L-systems where each symbol can match more than one production rule. If a rule with
context wildcards occurs earlier in the list of rules than a rule with a context limitation,
the first rule will always match, as it will be checked first.

36

pitch height, with the letter ‘A’ functioning as a placeholder symbol to indicate the
relative position of the next ‘B’. Out of this grammar model we’d get something like this

for generations 0-5:

F 4
> = = = = .
{ry oy
i | Hle A
(Y] P s 3 8o
Lb bo Lbh o

AL | —— Mvgg 28 P Os

Yo oy (oS r. {HoS oY

y_a— s e —w s 'y s 3

Figure 3.14: the first five generations of the L-system in Figure 3.12, mapped as block chords

Some of the interesting features of this L-system become musically salient even
with this simple mapping. For example, our L-system is constructed in such a way that
points of stability emerge fairly quickly: the first two symbols will always be a ‘BA’; by
generation 2, the sixth symbol will always be a ‘B’, with neighbors alternating between a
‘B’ on the left and an ‘A’ on the right, and vice versa. Each successive generation adds
another stable point where a ‘B’ is present (the ninth symbol for generation 3, the
fourteenth symbol for generation 4, etc.).

With our simple musical mapping, we immediately get results out of this feature
in the form of a static underlying harmony that increases in complexity and persists
throughout the succession of chords. This becomes obvious if we split our texture into
two staff systems, with the persistent notes on the lower system and the variable notes on

the top:

37

F

y - - - -

| Fan [.FaY

~ [. il

)] bo -

| |

X1 | IMFLS] L IMFLS]

,]° O F.L'S] I[.IIU ILALS] I[.IIU X SF

7

r di - - - -

| Fan L F

D} by oS
__.—-"'"{

A S 8 8 8

. L] iy i¥ i¥ i¥ L¥

et

Figure 3.15: our harmonic L-system mapping broken up into two staff systems. The lower system only
shows those notes that persist from generation to generation.

Looking at the music above we can clearly see a constant harmony emerge from
our mapping of the system. By measure five, curiously, we’ve generated what one could
describe as a Db major 7" chord (with the leading-tone in the bass). Similarly, other
repeating figures become apparent, such as the alternating presence of Eb (and later Ab)
and E with each generation. As the string expands, more of these persistent and
alternating features will appear. If we consider temporal persistence and periodic
alteration as musically salient phenomena that we want to emphasize, we can easily
develop a high-level parser to find static and repeating symbols between generations of
the L-system. For example, this parser could extract this data for use in decisions of
orchestration priority, and would begin to mimic some of the basic features of our
cognitive listening apparatus (Bregman, 1992).

If we unravel the musical texture to incorporate a time component, we can treat
each generation of the L-system as a discrete, self-expanding musical phrase. An
example mapping would be to treat each symbol as indicative of pitch height as before,
but add in a rhythmic element where each symbol (regardless of whether it represents a

note) advances the timeframe of the musical phrase by a set metric value. If we wrap the

38

pitch material around to a single octave (by performing a modulo-12 operation on the
pitches) and lengthen the note durations so as to remove rests caused by the symbol ‘A’,

we could get something like this:

) == ——— ==
Gi==__— === ————— ——
= : — - e L

Figure 3.16: the first five generations of the L-system in Figure 3.2, mapped melodically. Phrase marks
represent each generation of the L-system.

In addition to the persistent pitches occurring with their expected regularity, the
rhythmic mapping allows us to successfully represent the alternating patterns of groups of

‘A’ symbols in the string (represented as longer note values).

Static-length L-systems

A related and similarly interesting mapping scheme that is worth visiting concerns
Lindenmayer strings that remain of a static length from generation to generation. While
the L-system grammar was developed, as we have seen, to capitalize on principles of
database amplification to show development in stages, it’s trivial enough to develop an L-
system where the axiom sets the size for successive generations of the grammar model.

A set of production rules where each predecessor symbol is substituted by a single
successor simple will create a static-length L-system. L-systems that don’t grow can be
considered as a class of cellular automata in one dimension, and exhibit many of the
characteristics of these algorithms (Bossomaier and Green, 1998). With CA algorithms,

a very similar potential for self-similarity and static fields exists, but these comparisons

39

are made between generations of the algorithm, rather than along the length of the string.
Consider the following L-system rule; in the case below, the axiom is 80 symbols long
(39 symbols of ‘W’, one ‘B’ symbol, then 40 more symbols of ‘W’):
o 99*W, B, 100*W
pl: BB ->
p2: BW->
p3: B<W>B ->
p4: B<W>W ->
p5: WB->
p6: WW->

p7: W<W>B ->

W
W
W
B
W
W
B
p8: W<W>W -> W

Figure 3.17: a simple CA defined as a context-sensitive L-system

Note that the above Lindenmayer system contains no wildcards in the context
fields. All eight possible combinations of a cell and its two neighbors are covered
explicitly by the production rules.

The most common way to visualize this L-system is to view each successive
generation as a row of white and black tiles progressing from top to bottom in a grid.

The string represents the row, so we begin with 200 tiles, all of which are white (‘W?)
except for one black tile (‘B’) in the center. Depending on the color of each tile, as well
as the color of its neighbors, the tile on the row below is either black (‘B’) or white (‘W”).

The first 100 generations of this L-system look like this:

Figure 3.18: the first 100 generations of the L-system in Figure 3.17

40

This L-system traces the shape of a well-defined fractal pattern known as the
Sierpinski triangle (Sierpinski, 1916). It features obvious characteristics of
organizational self-similarity, as well as a continuous series of mirrored bifurcations in
the pattern (creating the illusion of lines splitting apart and moving away from one
another in contrary motion).

If we realize this pattern as music with each generation mapped to a musical
event, we can see some of the patterns emerge. We could use the letter ‘B’ to represent a
note at a particular pitch, and map the center 80 cells of the axiom to a pitch space
running from, say, G#0 to E7 (MIDI note numbers 20-100), for the first 128 generations.
The music from such a mapping (with each generation occupying an eighth note of
musical time) appears on the next page (Figure 3.19).

We can see from the music we’ve generated how the fractal bifurcation of
successive generations of the string translates into polyphonic density. What begins as a
monophonic line quickly grows to a density of 16 pitches by the sixteenth beat. It then
collapses back to a two-note line, increasing again to 16 and then 27 notes on the 24" and
32" beat. This increasing density is reflected in the shape above, as is the distance
between polyphonic lines and clusters (which increase over every growth-collapse cycle)
and the contrary motion of the lines (explicit in the entire pattern, but most obviously
traced in the outer voices of the clusters).

By treating a Lindenmayer string as a musical singularity (even if we still unwrap
it in time), we can easily investigate musically interesting patterns that occur between

generations of the string. However, the deterministic mapping we’ve been using has its

limitations. By treating some members of our Lindenmayer alphabet as metadata,

however, we can achieve some very interesting results.

[é" D e e ez e |t B 8 TRGT D :! 1;
19' :" :-jl T - j‘I b be 43 :jﬂ :bﬂ:ﬁ f‘ii %J

[év == $5% ot 8P4 270 B
];9 — T T . is e e sz s 7 et ik
T e e 8 VB e Ve ius L8 - s gs be twe — =
S S WP 2 45 s B
e He D de o'k
s = ile 8BS S LB e be tes 4
é: = TP EIEE Y E ;u:i:f!t :;iﬁgiﬂ —#%
v - - i
X ——
BN A N
ba > 42 i‘ = ,;ig #,; :fl-#? 3 g ¥ #E
, she 18 1B ,;;=5 ;; 3
be Les ',*:#:* :_,9# 4 :# == be te sew f2
é _— . o 75 ut n-"}d:#n-: Td PR """‘j:i #:;
— 1 vy |Pe bew 4o 4 o fo= 8 i3
Y Taes i vz iE — o ’_’#’!
e howys bgg =5 =iE W
. i - par #F ‘g

Figure 3.19: the first 128 generations of the L-system in Figure 3.17
Parametric symbolic mapping (metadata)
The mapping strategies we’ve considered thus far have dealt with an L-system
string as a directly evaluated stream of events, evaluated in series or simultaneously.

Symbols in our Lindenmayer alphabets are unlinked except in the rather trivial sense that

42

they follow one another either in time, pitch height, or another mapping scheme we might
devise to generate a stream of musical information. In this section we’ll introduce some
examples of musical parsers to interpret symbols as musical metadata, i.e. instructions
that influence subsequent musical events. Rather than being mapped to events
themselves, these symbols can be mapped to instructions to a virtual musical interpreter
akin in scope to a turtle interpreter.

If we revisit our turtle graphics instruction set for a moment, we remember that in
most Lindenmayer parsers, symbols are not treated equally in terms of their direct
consequence. Often, the true meaning of a symbol only becomes clear when one
considers its context. Symbols earlier in the string influence symbols later in the string,
and a symbol at any given point is defined only by the symbols leading up to it, even
though the grammar model uses the same systems and rules for generating all the
symbols in the alphabet. To put an Orwellian spin on it, all of our symbols are equal (to
the L-system generator), but some symbols are more equal than others (to the interpreters
we devise).

For example, if we look at the following L-system:

: F

pl: F -> +GQ
p2: G -> FY-F
p3: Q -> -FG+
p4: Y -> +GF-

Figure 3.20: an L-system with a six-symbol alphabet
The raw L-system strings for generations 0-5 of this system look like this:

Gen O: F

Gen 1: +GQ

Gen 2: +FY-F-FG+

Gen 3: ++GQ+GF--+GQ-+GQFY-F+

Gen 4: ++FY-F-FG++FY-F+GQ--+FY-F-FG+-+FY-F-FG++GQ+GF--+GQ+

43

Gen 5: +++GQ+GF--+GQ-+GQFY-F+++GQ+GF--+GQ+FY-F-FG+--++GQ+GF--+GQ-+GQFY-F +-
++GQ+GF--+GQ-+GQFY-F++FY-F-FG++FY-F+GQ--+FY-F-FG++

Figure 3.21: generations 0-5 of the L-system in Figure 3.20
Suppose this time, instead of a direct mapping of symbol-to-event, we were to map as
follows:

F Sound a note at the current pitch for the current duration.

Sound a note a minor third higher than the current pitch for the current
duration.

- Transpose the current pitch down a perfect 5t.

Transpose the current pitch up a perfect 5th.

Decrease the current duration by 125 ms.

Increase the current duration by 125 ms.

()]

<0 +

Figure 3.22: a simple instruction set for a musical parser

Let’s define the terms “current pitch” and “current duration” to begin as middle C
and 500ms, respectively. For the moment, we’ll continue to scan the string from left-to-
right using a constant timebase of 125ms per symbol (i.e. at a constant tempo of 120
quarter-note beats per minute, with each symbol representing a sixteenth note). As a
result, symbols that don’t generate notes will advance the time, creating a rhythm based
on when the ‘active’ symbols (‘F’ and ‘G’) fall. Generations 0-5 (separated by double
bar lines) might look like the music on the next page (Figure 3.23).

By using an instruction set for our Lindenmayer parser, we’ve introduced
elements of parametric mapping into our system. Parametric mapping adds a great deal
of flexibility to how we interpret our L-system data. By manipulating our instruction set
and mode of transversal (the system by which we go through the string) we can generate

vastly different musical output for any given Lindenmayer string.

44

SRS T s 7y
- EES Sy EruP P R
= = {ﬂ‘_:r',_ Syrois r e
,; S S —
ééMNL nq;_________ﬁ-ﬁﬂ'n-- = |." 7k ce T HNT Y
=
PEEAE PR AL TEE S PR
PN T — - |i -
f)i bq__‘_._,;! ‘?‘?Zr- |-"._II'.I S | -
11)
é Mot] Py g ;.;r_":‘-.r AR = FEE LR
[#]- ...
&f_g# = - syt -

Figure 3.23: generations 0-5 realized using the instruction set in Figure 3.22

45

By inserting a flexible parametric parser between our L-system and our musical
output, however, we’ve massively expanded the potential complexity of our mapping
system. The risk inherent in this endeavor is obvious; as the ratio of metadata to event
data increases, the less our musical output will directly reflect the Lindenmayer input.

With this in mind, the important concern of how to maintain musical salience in
terms of the features of the L-system in question needs to be addressed. While there
exists no sure formula for designing a parser system, a few ideas come to mind.

Generally speaking, the features of the Lindenmayer topology that need to be
retained in our musical output are those of growth and self-similarity.® These features are
expressed not through the alphabet of any given system per se, but rather through how we
apply our production rules to the system. From our exposure to L-systems as a modeling
language, we can discern that the symbols that occur as predecessors in the production
rules tend to be either ‘active’ symbols in the alphabet (e.g. ‘F’ in our turtle parser) or
symbols that have no effect on the parser (e.g. ‘X’ in the fern example, which exists
solely as part of the production rules and is ignored by the parser). Symbols which are
interpreted by the parser as parametric data (‘[‘, ‘4, etc.) are seldom included as the main
component of a production rule, with one important exception noted below. As a
correlate, the primary ‘active’ symbols in the turtle parser are seldom ignored by the

production rules entirely, though there are cases where this happens.

% This is assuming, of course, that we want our musical output to in some way sound like
it could have come from an L-system. If we’re simply “mining” our data to generate
interesting numerical material that we can translate into music, the task of making the
self-similar metaphor musically salient becomes much less important. The ideas
presented in this paper are all somewhat geared to the author’s particular goals as a
composer, i.e. to generate algorithmic music that explores the features of the algorithm
used in a vivid and interesting way.

46

We can restrict our instruction set based on this observation to allow as ‘active’
symbols only those parts of the alphabet that are integral to the production rules. In
addition, we could map parametric commands only to those symbols that are not matched
as predecessors in our production rules. The alphabetic subset used in the production
rules would then be comprised of only those symbols that are ‘active’ to the parser or
important to the L-system we want to create. Parametric symbols would only be included
in successor symbols or context matching.

One exception to the guidelines above, however, would permit the inclusion of
parametric symbols into the production rules. This exception occurs when part of the L-
system relies on complementary symbols. In our turtle parser, these would include the ‘-’
and ‘+’ symbols, which are inversions of one another. In our initial musical parser above,
the symbols {-,+} and {Q,Y} are complements of each other, and will often feature in
production rules where they alternate one another, e.g. Q->Y and Y->Q. This is common
in L-systems where the polarity of some of the fractal features alternate on successive

generations.

The L-system in Figure 3.20 could be re-mapped using a different (and in some
ways simpler) instruction set as follows:

Increment the current pitch by 3 semitones then play a note.
Decrement the current pitch by 4 semitones then play a note.
Increment the current pitch by 5 semitones then play a note.
Decrement the current pitch by 7 semitones then play a note.
Speed up note delta time one metric value.

- Slow down note delta time one metric value.

+ <o 6om

Figure 3.24: another instruction set for a musical parser

With this parser, we have changed a number of things about how we interpret our

string. Firstly, we’ve decoupled our timebase from the pacing of the string. Put more

47

simply, our parser now controls the amount of musical time between events, depending
on whether events occur and on the current state of a variable (the “note delta time”,
afterwards NDT). As a result, time only advances when ‘active’ symbols are read from
the string, though the actual distance between events is determined by parametric
information. The mapping table for the note delta times in the musical example that
follows is also a bit more sophisticated than simply adding and subtracting to the duration
of notes, as we were doing previously. For this parser, we decide on a 4/4 metric grid.
NDT values in the range below four beats (an entire measure) change by increments of
exponential values. For example, if our current NDT is a half note, a symbol ‘+ will
increment the pacing to a quarter note. Further ‘+” symbols will speed up the NDT to
eighth notes, sixteenth notes, thirty-second notes, up to a salience threshold we can define
ahead of time. NDT values above four beats in length, however, change in linear
increments of quarter notes, so that successive ‘-> symbols will change an NDT of four
beats to five beats, six beats, seven beats, etc.

Secondly, we’ve made the four symbols featured in the production list ‘active’ as
well as parametric. The symbols ‘F’, ‘G’, ‘Q’, and ‘Y’ all generate a note in the music,
but they determine their pitch by making a relative intervallic jump from the previous
note’s position prior to sounding. By placing the transposition before the actual note, we
perform the musical equivalent of a prefix rather than a postfix operation on the current
pitch height. As a result, the symbol ‘F’ will always sound a minor third above the
previous note. If we had done this the other way around (sounding the note, then
transposing), the pitch sounded by an ‘F’ would depend entirely on the transposition level

set by the previous ‘active’ symbol, which would miss the point.

48

The following example uses generation 5 of our L-system (see Figure 3.19). We
have set our initial pitch to C 5 and our initial note delta time to a half note. With some
manual intervention in terms of note durations and phrase markings, we could get

something like this:

J f.&ﬂiuﬂ H'Jh"l —_—
batremr i oM Jirln 9 35 139E " v e
4 — — ;

S ." LS N T T 2 = . - .
épa ;‘fi; ?l‘l‘# ,jf II;.;?" .-"';" 1&:# |,.r i \i) |
&

"d-_-_.__q._:._-ﬁ'_.tﬂ_ N. 3o . v ha -
é’ " fo_e 'f"'}?:arl 'f"f‘?;_ e 'f'-#?

ETEEE S e RS S & P EE R E N
i ___————'—‘——-—-—__ — T
& 773y Phrr i r 1§ 2 be gt |

& v e —_—
o 110 T ipp Te |
[y
Figure 3.25: a musical realization of generation 5 of our L-system, using the instruction set in Figure 3.24
If we compare this parser output to what our previous parser yielded, we could
definitely argue that our new instruction set is a big improvement. There are a number of
reasons for this, not least being that we’ve made sensible choices in which symbols are
mapped to ‘active’ musical events, versus which symbols we relegate to behind-the-
scenes operations on our musical variables. By binding intervallic leaps and note events

together, we’ve created a framework where every sounding note has a pitch derived from

49

its value as a Lindenmayer symbol, matched against the previous pitch. In addition,
we’ve chosen unique intervallic leaps for our symbols (even though ‘Q’ and ‘Y’ are
similar in that they both transpose through a perfect 4™ cycle, albeit from opposite
directions). As a result, we’ve created a deterministic symbol mapping. This is why
repeated patterns in our Lindenmayer string in this mapping yield motivic fragments with
common interval relationships (e.g. ‘FYFFG’ will always yield some transposition of the
interval vector {3, -7, 3, 3, -4}).

Before we get carried away, however, we should look at a few other reasons why
this particular mapping seems to work much better that its predecessor in Figure 3.20.
One possible reason is simply that we’ve implicitly designed our mapping towards
maintaining a monophonic texture. While there are many mapping strategies which can
generate independent polyphony from a single string, mapping production symbols to
note duration is probably not the way to do it. Our preferred method, which we’ll look at
in the next chapter as we investigate real-time scenarios, is to use branching.

Another reason why this mapping seems to adequately reflect some of the
characteristics of the L-system string has to do with our choices in mapping timing and
pitch. By using an exponential scale for short NDT values and a linear scale for long
ones, we evade the pitfall of creating incredibly long gaps in the score (which would
happen if we stayed in the exponential realm for long durations); similarly, a linear

mapping would have caused absurdly complex NDT values in the shorter range.

7 Because of the deterministic quality of our mapping strategy, we could decode this
piece of music backwards as a ciphertext, and generate all the ‘active’ symbols of the
Lindenmayer string we started with!

50

As for pitch, we were fortunate enough to pick a mapping that kept the melodic
line within a reasonable boundary range, creating a much more satisfying experience
than, say, the way we mapped generation 5 using the earlier mapping. One of the ways
we accomplished this was to pick interval relationships that reflected the statistical
frequency of the equivalent symbols in the string. Let’s look at how we came to that
decision.

Generation 5 of our L-system has 117 symbols in the string. A histogram of the

six symbols in our alphabet yields something like this:

Symbol # of times % of total string
F 21 17.948717%

G 19 16.239316%

Q 12 10.256410%

Y 7 05.982906%

+ 32 27.350427%

- 26 22.222222%
Total 117 ~100%

Figure 3.26: statistical breakdown of the symbol frequencies in our L-system

We can find out a few things about how our musical mapping will play out just by
looking at these numbers. For example, the fact that there are roughly twenty percent
more ‘+’ symbols than ‘-’ symbols in our string indicates to us that if we bind a
complementary mapping to those two symbols, the ‘+’ will gradually dominate the
mapping. For example, if we had mapped those two symbols to equally measured
increases and decreases in volume, respectively, the end of our musical phrase would be
significantly louder than the beginning. In other words, despite local incidences of
crescendi and decrescendi, our piece overall would crescendo. Obviously, we could
view this as a feature of this particular Lindenmayer string and enjoy that artifact of the

mapping as generating an overall arc to the piece that might otherwise be lacking.

51

In our present case an anomaly occurs. If our statistics are true (and we’re
reasonably sure they are), then our piece should get faster as it goes along, and not (as it
seems to) slow down towards the end. However, we’re forgetting to take into account the
placement of these complementary symbols along the string. Three of our ‘+’ symbols
occur at the very beginning, effecting not a change in pacing, but simply changing the
NDT of the first note to a sixteenth note from its initial value as a half note. Two of our
‘4’ symbols occur at the end of the string, where they do nothing. As a result, our score
is only 27 to 26, hardly a difference. The slowdown is further accentuated by the fact
that the density of ‘+’ symbols and note-producing symbols is slightly skewed towards
the beginning of the string, resulting in a sparser texture as we progress through the
interpretation.

Looking at the histogram of our ‘active’ symbols (‘F’, ‘G’, ‘Q’, and ‘Y’), we see
that each is slightly more frequent than the next as we go down the alphabet, respectively.

b

Just as with the statistics for our ‘+’ and ‘-’ symbols, this is a byproduct of the production
rules, which may substitute one symbol more frequently than others. Rather than making
the symbols directly invertible in pairs (as we’ve done with ‘+’ and ‘-’), we’ve decided to
pick interval values that more-or-less offset one another, i.e.:

72 (our starting pitch) + 21*3 (‘F’) + 19*%-4 (‘G’) + 12*5 (‘Q*) + 7*-7 (‘Y’) =70

As aresult, we only drift two semitones over the course of the entire piece (if we

start from the C 5 we never hear).

® Statistical analysis can be a vital tool to any algorithmic pre-compositional process,
whether the data sets are deterministic or not. Whenever we insert an algorithm that
changes a musical parameter using relative steps, we run the risk of the data causing the
parameter to jump off the scales. Now that the ‘compute time’ of many of these
algorithms has decreased to virtually nothing (i.e. we can hear the results as soon as we

52

We’ve seen in this chapter how mapping is the crucial force in determining how
to apply Lindenmayer systems towards the generation of musical information. In the
next chapter, we’ll explore the use of L-systems to generate musical accompaniment to a
real-time axiom (i.e. a performer) as well as look at some ways to use branching to
generate a more complex texture. Finally, we’ll discuss some of the ways in which we
could integrate L-systems into real-time performance systems to influence not only the

musical narrative, but acoustic phenomena as well.

make the algorithm), it’s easier to correct for these discrepancies as we work, but it’s
often worth our time to compute the median transform (as well as the boundaries of our
transformation) ahead of time, to make sure our parameter remains in a manageable
range. These same histograms (and other statistical methodologies) are equally useful in
comparative analyses of existing pieces of music, and are widely used in music research
(see e.g. Foxley 1982, Temperley 2001).

53

4. Interactive Performance Using L-systems

In this chapter we’ll take a look at some of the ways to implement Lindenmayer
systems in real-time as a way to generate musically interesting output from a live
performance. In the last chapter, we investigated some of the various mapping schemes
for generating musical material from Lindenmayer strings. What follows are some
thoughts on how to do the reverse; we’ll be taking musical material and looking at how to
transform it into data that can drive an L-system, thus generating a string that can be
interpreted to create a musical transformation of or accompaniment to the incoming
musical stream. We’ll close up our investigation with some ways in which these new
methodologies (as well as our mapping schemes from the previous chapter) can be
integrated into a functional interactive performance system that runs reasonably well
when driven by a human performer in real-time.

For the purposes of this chapter’s discussion, we’ll first have to explain what we
mean by a real-time performance system. The scope of that expression (‘real-time’, and
its slightly more fashionable cousin, ‘interactive’) is very broad, and is often used in a
misleading way. The real-time system outlined in this paper fulfills the following
somewhat restrictive definition of a real-time performance system.

Our interactive real-time music performance system is an environment wherein a
listening agent (in this case a computer) can interpret and process musical or acoustic
data from a live performer as soon as it is received, and generate some sort of process
based on that data, without having to know explicitly the musical information that will be
received and when it will receive it. Furthermore, the system must be designed in such a

way that it functions in a reasonable manner regardless of the musical actions of the

54

performer driving the system, accomplishing this task through explicit data reduction,
boundary conditions, and other selective filters on the performer input.

Our system (outlined below as it was in Chapter 1) consists of a number of
modules. The bulk of our discussion below will focus on the ‘Lindenmayer interpreter’
(and to some extent the ‘symbolic pre-processor’ and ‘musical interpreter’). However, a
walkthrough of the rest of the system is appropriate to see how it will fit into the grand

scheme of things in our interactive system.

Overview of Scheherazade

Musical input {performer/score)

Acoustic preprocessor (if
necessary)
| Symbolic preprocessor Score following system (exerts
/ (musical information IN, changes to the system based
symbuolic information OUT) on performance and timeling)

[

Axiom (vanable

Feedback Lindenmayer interpreter
(variable) Mew rules

Lindenmayer
slring

‘ Turtle graphics interpreter Musical interpreter
| (multiple mappings)

* Vector graphics data

MNew mappings

L

Visual output
(image)

Y
k/'b Sig"iﬁ;‘“;:"‘sing Synthesis module
- {accompaniment)

(accompaniment)

N

Musical output (sound)

Parametnc instructions

Figure 4.1: Flowchart of the Scheherazade system for real-time performance

55

Our system is based on the premise that the main stream of control data comes
from acoustical information provided by a live performer. The audio stream from the
live performer is digitally captured by the system and passed to the ‘acoustic
preprocessor’.

The ‘acoustic preprocessor’ has the task of taking the sound from the performer
and doing two things with it:

. The module cleans up the audio signal so that it can be used as source material for
the ‘signal processing module’. This can be a reasonably simple set of procedures
(such as equalization or level limiting) or a more complex undertaking, including
noise reduction, stereo imaging, etc.

. The module performs ‘data mining’ on the audio signal to generate musical
control data for the ‘symbolic preprocessor’ and the ‘score follower’. This
involves such things as determining the fundamental pitch of the performer
(“pitch-tracking”), describing an amplitude curve of the performance dynamics
(“envelope-following™), and parsing the acoustic stream into discrete musical
events (“attack detection”) to limit the data passed on down the module chain to
only those events which are relevant for the other modules. These tasks are
performed by so-called ‘listening agents’ (Rowe, 1993) that act independently of
the rest of the system, providing it with information on the ‘current state’ of the
performance. If necessary, a hardware device can accomplish much of this work,
relieving the computer of the substantial overhead of parsing musical information

out of the acoustic stream.

56

The ‘symbolic preprocessor’ takes the musical information provided by the ‘acoustic
preprocessor’ and converts that information into a real-time stream of axioms for the
generation of Lindenmayer strings. How we do this and what we hope to accomplish
with this module will be discussed in depth below.

The ‘score following system’ listens to the musical data and uses it to track a
performer’s progress through a piece of music. As the performer plays through the piece,
this module triggers appropriate changes to the behavior of other modules in the system.
The score follower needs to be designed in such a way as to be able to flexibly ascertain
where a performer is in particular piece. It does this by having a copy of the performer’s
part stored in memory, comparing what the performer actually does with what they
should be doing at a given time. In more open-form scenarios (such as improvisatory
pieces), the score follower can consist of a ‘cue list’, allowing a performer to play over a
certain section of the piece for an arbitrary length of time until a predefined ‘cue’ is
performed (such as a specific sequence of notes). The follower then makes changes to
the system, and waits for the next ‘cue’.

This is by no means the only way to follow through a piece, however. Developers
of interactive music systems often implement systems that process performer input based
on explicit time-based instructions. While these systems are still interactive in the sense
that the performer can respond musically to the computer, some of the flexibility of the
system is jettisoned in favor of building a system that works deterministically, regardless
of what the performer does. These systems are functionally equivalent to playing along

with a sequenced series of events; even if those events may depend at the microcosmic

57

level on data acquired by the performer, at the macrocosmic level they are still running
along to a master timeline over which the performer has little or no control.

At the other extreme, however, are systems that require direct tactile intervention
to progress through changes in a piece. These systems require some sort of command
issued by something outside the musical stream (e.g. a mouse click, a MIDI pedal) to
change their behavior, and have a number of drawbacks as well, particularly when
utilized by non-specialists.

The use of a score follower allows a composer to have a certain amount of
flexibility in terms of the pacing of the performance without having to rely on an
additional level of control interface for the computer program. Our score follower, which
allows for as much (or as little) performance flexibility as we need, is based on the
EXPLODE follower developed by Miller Puckette for Max/FTS at IRCAM (Puckette,
1990) and updated by David Zicarelli at Cycling’74 as “detonate” (Zicarelli, 1995).

Because the system we’ve designed has no deterministic clock to it, our computer
has no way of knowing for certain what the performer will do next, even if it has a score
to following along with and can expect certain results. As a result, most of the
investigations into L-systems and live input we’ll make in this chapter will work under
the assumption that we only know what the performer is playing now, as well as over a
limited time in the past.

The score follower can make formal changes to two modules that we’ll discuss in
depth below. The ‘Lindenmayer interpreter’, which also receives axioms via the
‘symbolic preprocessor’, outputs Lindenmayer strings based on production rules

optimized for real-time input. Those strings are then fed into a ‘musical interpreter’,

58

which generates information in a manner similar to that described in the previous chapter,
but with a framework added to make the output relevant for real-time musical
accompaniment. Both of these modules can change their behavior in response to
structural instructions issued by the score follower. In addition, a turtle interpreter can
also be driven by the same Lindenmayer string as the ‘musical interpreter’, provided the
two systems share a compatible alphabet. This allows for synchronized generation of
music and graphics.

The ‘signal processing module’ permits the transformation of the performer’s
sound by the computer, in response the commands passed down from the ‘musical
interpreter’ in response to the performer. The exact way in which this module behaves
internally is completely flexible,' but it is designed in such a way that different
interchangeable modules can be used for different pieces of music, or even within the
same piece. A set of music synthesis algorithms (in the ‘synthesis module’) can also be
driven by the ‘musical interpreter’ to generate accompaniment for the performer. Either
of these two modules can be offloaded to hardware synthesizers and signal processors,
provided some mechanism is in place to get data from the ‘musical interpreter’ into a
form they can easily understand (typically MIDI).

Now that the system has been outlined somewhat, we’d like to look in depth at the
three modules that concern us in determining how to translate musical data into

information that can drive an L-system that generates musical accompaniment. The

" That is to say, any signal processing routine that takes an acoustic signal and transforms
it according to some parametric information (provided by the ‘musical interpreter’) can
be used in this module. For example, an echo unit where the rhythmic spacing of the
different echoes is defined by the L-systems would be a perfectly good candidate for this
module.

59

‘symbolic preprocessor,” which needs to translate musical information into symbols
compatible with the L-system grammar, the ‘Lindenmayer interpreter,” which runs the L-
system routines on the information output by the ‘symbolic preprocessor,” and the
‘musical interpreter,” which takes complete Lindenmayer strings from the ‘Lindenmayer

interpreter’ and translates them back into musical information.

Symbolic encoding of musical information

One of the ways in which we can use Lindenmayer systems in real-time is to
encode a stream of musical information as a set of symbols that can serve as an axiom for
an L-system. How we encode music into these symbols, and whether the encoding is on
single events or over a larger time period is another issue of mapping which we will have
to resolve. First we have to classify the different types of information we can receive
from our acoustic preprocessor.

Let us assume that the system we’ve designed can determine three types of
information about musical events input into the computer by a musical performer: pitch,
amplitude, and duration (encoded as note delta times between successive events). In
order to make the process of following the performance (“tracking’) more fluid, we can

limit the scope of the information by filtering out events based on certain criteria. For

example:
. We could reject notes below a certain amplitude (which may be mistakes).
. We could reject notes that are known to be outside the musical range of our

performer’s instrument (which must be mistakes made by the pitch detection

algorithm).

60

. We could reject notes that fall below a certain NDT from the previous event and
are of the same pitch (these notes are probably erroneous double attacks.

. We could limit the data flow from notes that change over time without re-
attacking (e.g. glissandi) by only listening to the beginning and final pitches of the
note.

For our purposes, we’ll also assume that the performer input can be encoded as a series of

monophonic streams (e.g. if a violin performer plays a double stop, we can access the two

pitches as separate entities when we encode them as symbols). This is not always a

trivial exercise, and does not imply that any perceptual sense of independent lines will be

maintained. As a result, we can assume that we’ll get all the pitches played, but we might
not be able to immediately ascertain which pitch came from which previous pitch if we
have a succession of diads or triads. This would involve a regression analysis that may
slow down the system.”

For each event played by our performer, therefore, we’ll get three numbers from
the preprocessor (a pitch, an amplitude, and an NDT value), as well as some possible
metadata (e.g. a flag could be set to tell us that the latest pitch is not a new event, but is a
glide from a previous pitch).

A list of the first six notes of ‘The Star Spangled Banner’, encoded as triplets of

numbers, might look something like this:

> See Rowe, 2002 for how one might do this if it was necessary.

61

Pitch Amplitude NDT

67 100 0

64 97 300
60 105 100
64 101 400
67 89 400
72 110 400

Figure 4.2: ‘O Say, Can You See!’ encoded as a sequence

The musical data is encoded using MIDI pitch and velocity values for the first two
columns (in MIDI, data is usually in the range of 0-127). For pitch, MIDI maps middle C
to value 60, with semitones above and below that pitch changing the value in increments
of 1 (e.g. the first note of our sequence is the G above middle C, or the pitch 7 semitones
above 60). Amplitude is mapped in a similar range and is referred to in MIDI parlance as
velocity (reflecting the bias of MIDI towards keyboard performance). The NDT values
are the number of milliseconds elapsed since the last note (the start of the performance
has a NDT of 0, since it’s the first note we hear).

We can create a Lindenmayer preprocessor that ties symbols to any of these
events, or all of them, or treats them as a unit. If we take the simplest possible mapping,
we could deal at first with the pitch and encode it into a Lindenmayer alphabet. By
performing a modulo-12 operation on the pitch stream (preserving the octave as a
separate list of data by dividing the raw pitch by 12), our sequence would look like this:

PC Octave

ONDI»O DN
(o2 IO, INT, BN, BT, IO,

Figure 4.3: ‘O Say, Can You See!’, pitch classes and octaves only

62

The ‘PC’ column of our field is virtually a single-symbol alphabet already. If we
take a hint from set theory and encode pc 10 as ‘T’ and 11 as ‘E’, we can use the pitch

classes directly in an L-system.

L-systems as transfer functions
A simple L-system could encode each possible pc as symbols in our alphabet.

We could then devise a deterministic, context-free L-system that looks like this:

w: PC,

pl: 0 -> 7
p2: 1 -> 8
p3: 2 -> 9
p4: 3 -> T
p5: 4 -> E
p6: 5 -> 0
p7: 6 -> 1
p8: 7 -> 2
p9: 8 -> 3
p10: 9 -> 4
p11: T -> 5
pl12: E -> 6

Figure 4.4: a simple symbolic transfer function

This L-system is a simple example of a transfer function. In our system, every
pitch class (denoted as PC, where n is the current time) is mapped to another pitch class
seven semitones higher. This effects a transposition of our input stream up a perfect 5"
(or down a perfect 4™). Our musical sequence would then play ‘The Star Spangled
Banner’ in G major. By mapping all the symbols in this way, our transfer function is key
agnostic, so that music fed in with a different key will still be transposed correctly. Note
that this system only encodes the pc symbols, and not the octave of the sounded note, so
some notes may be transposed into an incorrect octave when they are rejoined with the

octave information from the preprocessor. To correct this, we would need to expand our

63

alphabet to include more than one octave of symbols to indicate transposition outside of
the O-E alphabet.

It’s also worth noting that our transfer function will work well using the recursive
metaphor of the L-system. Successive generations of the L-system on a single-note
axiom will transpose the incoming musical stream around the cycle of 5. Generation 5
of our L-system, then, will transpose our C major melody into B major.

We could map our function to do arbitrary pitch remapping. For example:

w: PC,

pl: 0 -> 0
p2: 1 -> 0
p3: 2 -> 8
p4: 3 -> 3
p5: 4 -> 7
p6: 5 -> 5
p7: 6 -> 3
p8: 7 -> 3
p9: 8 -> T
p10: 9 -> 2
p11: T -> T
p12: E -> 5

Figure 4.5: a more complex symbolic transfer function
This mapping scheme translates multiple pc inputs into the same pc output (e.g.
pitch class 3, 6, and 7 all yield 3 on the output). If we show generations 0-5 of a
chromatic scale played through this pitch mapping one after another, we get the

following:

—_—

—_— #.l‘ 4 : ——— = -
. #fe o je ® e * ei® -
Ufir‘#" # - e . - -
]
]
: —_ " : [——
é e = cﬂ'f" |; L = pup-' |
O L - o pe - - -
; —_— s | L _— -
e - L i P - ————
S re - - = — P - - =

Figure 4.6: chromatic scale played through our transfer function (generations 0-5)

64

Note that by generation 3 there is no change from generation to generation. By
mapping more than one input pitch to the same output pitch, our transfer function has
created a number of attractors in the system, whereby notes at any pitch will eventually
gravitate towards pitch classes 0, 3, 4, and 10.

By performing a transfer-based L-system on a musical input stream, we can
generate a single accompaniment line to go along with the performed input. As the
original sound of the performer will (typically) be heard along with the output from the
performance system, this simple mapping is most useful to add deterministic harmony

lines to the system.

L-systems as symbolic filters

A slightly more involved mapping would involve treating the pitches acquired by
the preprocessor as a series of interval vectors. Thus, instead of {67, 64, 60, 64, 67, 70}
as our musical input for the national anthem, we’d be working on a remapping of the
numbers {0, -3, -4, 4, 3, 5}. Rather than designing an alphabet around all possible unique
chromatic intervals for the given input, we could assign an alphabet based around a three-
symbol axiom for each interval. Our L-system could use ‘H’ and ‘L’ to represent
intervallic direction (higher or lower), our serial numbering (0-9 plus ‘T’ and ‘E’) for the
specific intervals, and symbols to denote leaps of more than an octave (‘O’ for more than
one octave in either direction). The third symbol in the sequence could be omitted or
replaced with a dummy symbol (e.g. ‘.”) if the interval in question is within one octave.

For example, if we take the following melodic fragment:

65

———— .-—-"""————. - —
é#@' - '-—:.-_:-——f\—._i-! v - de |
3 L 3 o
& i 3F e TP

Figure 4.7: melodic fragment
A list of interval vectors for this melody would be {0, -4, -2, -5, 14, 1, -7, -3, 8, -
7,1,-1, -3,12,-7,-1,-1,-2,9,-10}. Our Lindenmayer pre-processor would encode
these intervals as:
HO.L4.L2.L5. H20 H2. L7.L3. H8. L7. H1.L1. L3. HOO L7. L1. L1. L2. H9. LT.
We could develop an L-system to remap just a few of these intervals to create a
divergent accompaniment line, e.g.:

[PCn - PCn_'|
pl:

3 -> 0
p2: 4 -> 7
p3: 8 -> 2
p4: 2 -> T
p5: 1 -> 3

Figure 4.8: a more selective symbolic transfer function
We could apply these re-mapped intervals to the incoming pitch material in two
possible ways. If we start with the accompaniment on the same initial pitch as the input
and start transforming our material from there, we could remap the intervals based on the
previous output pitch, so that the remapping has a cumulative effect. Alternately, we
could remap the intervals based on the previous input pitch. The L-system then works
according to the metaphor of a filter, with the two algorithms described in the previous

sentence corresponding to a recursive filter (output is derived from previous output) or a

66

non-recursive filter (output is derived from previous input). The two output melodies are

shown below (on separate staves below the original).

(riginal -—_ﬁ
I —_— e - - . —
é #G‘ - . - - ::——|--! T - #. |
L1 (recursive)
| il —_— b —_—
b b S
ie te
L2 (nontecursive) o= ..
#Q i fl-" | ¥ - - |
X ' - - ES
3 2
é = — e g 7] #; | r . e iﬁ_ﬁﬂi ||
) T ! e i fa:
3
é: ﬁﬁ - J'::Tt T r— | ||
re - e 7 o o - bl — = : !
v ’) = ie = =
L f=
3
———— e —_—
b T FT S L
9 e fo pe i te te = - $o

Figure 4.9: the melody in Figure 4.7 transformed by the L-system in Figure 4.8 (original, recursive
transformation, non-recursive transformation)

To explore the two methodologies a bit further, we can look at some differences
in how the two versions of our accompaniment line play out. Both of them start on the
same pitch (C#) and move to the same note as the first interval (F#, remapped from A
because of the 7->4 production rule). The next interval in the list is —2, which becomes
remapped to -10 in our production rules. The recursive application of the L-system
applies that -10 interval to the previous value output from the L-system rather than input
from the performer. Therefore, we generate a note 10 semitones below the F#, which
gives us a G# below middle C. The non-recursive version of our melody applies that -10
interval from the last pitch input into the system, i.e. A (the second note of our original

melody). As aresult, we get the B below middle C as our accompaniment note. A vivid

67

example of how these approaches vary is in the second beat of measure 3, where the
sixteenth-note pattern tied over from the first beat (E, A, Bb, A) gets remapped quite
differently. It’s worth noting that the recursive filter maintains intervallic relationships
internal to its own accompaniment line, whereas the non-recursive filter constantly ‘re-
synchronizes’ its starting pitch to the original melody, so that intervallic consistency is
sometimes lost. However, the non-recursive implementation is band-limited, in the sense
that our non-recursive accompaniment line will never stray too far in terms of range from
the original. The recursive algorithm, on the other hand, can easily veer through
successive large output intervals well out of the melodic range of the input melody.
Although it might have escaped notice, our Lindenmayer string derives its
running axiom in real time by computing the interval vector as the difference between the
latest performed pitch class and its immediate predecessor (PC, — PC, ;). We could create
a musical accompaniment in a similar way by generating production rules based on the
sum of the current and last pitch classes (an aggregate), or the average, for example. By
adding more and more past pitches into the computation we can sculpt an accompaniment
line based on more musical material, allowing for a more subtle application of the
process. This is analogous to varying the order of a filter in signal processing, allowing
for a more contoured alteration of a sound spectrum. As with higher-order filters, the
amount of delay before the system starts to function appropriately will grow as we look
back further and further in time for information. If we are at the beginning of a
performance and we need to look back four events to construct our L-system axiom, we

won’t have anything to drive the L-system until the fourth note of the piece.

68

Figurative encoding

Another way in which we can encode the real-time musical stream is to simply
use L-system symbols as placeholders for any musical data. By doing this, we assign a
symbol in our L-system alphabet to represent the current musical event (whatever it is),
and then generate a system to create an accompaniment accordingly.

For example, if we take our L-system from the previous chapter:

: F

pl: F -> +GQ
p2: G -> FY-F
p3: Q -> -FG+
p4: Y -> +GF-

Figure 4.10: an L-system with a six-symbol alphabet, taken from chapter 3

If we bind the symbol ‘F’ to represent the current pitch, we can create an
accompaniment line where every pitch is run through the L-system equally, spawning an
independent melody off of each note. To do this, we’ll use generation 3 of this L-system
(++GQ+GF--+GQ-+GQFY-F+), and apply it to every incoming pitch. We’ll also use the
same L-system musical parser we developed towards the end of last chapter, i.e.:
Increment the current pitch by 3 semitones then play a note.
Decrement the current pitch by 4 semitones then play a note.
Increment the current pitch by 5 semitones then play a note.
Decrement the current pitch by 7 semitones then play a note.

Speed up note delta time one metric value.
- Slow down note delta time one metric value.

+ <o om

Figure 4.11: our instruction set for the L-system in Figure 4.10

The way we approached this particular L-system (and parser) for pre-
compositional scenarios is to assign a starting pitch and duration to feed into the L-
system. To use this as a real-time engine, however, we have a decision to make. If we

want the accompaniment to start immediately (so that when the performer plays a note

69

the L-system spawns an accompaniment line), we have no way to assign a starting
duration correctly (i.e. we have no idea how long the performer is going to play the
current note for). On the other hand, if we wait until the performer finishes the note, and
start the accompaniment line when she or he plays the next note, we can attempt to derive
the duration to feed into our L-system based on the NDT time of the new pitch (which
will be greater than or equal to the duration of the previous note). Using the latter
system, however, may cause more mistakes than we think, given that we have no way of
preventing against the performer playing a note, waiting ten seconds, and then playing
another note (causing a huge NDT for our L-system to start with). For our purposes,
then, it might be best to rely on a starting duration value derived from some other source,
such as the score following module, which may have a general idea of what duration the
current note might be.

If we feed in our melody from Figure 4.7 (above) into this L-system, with each
note coming in as the axiom of a new run of the grammar model, we could get something
like the bottom staff of the line below. We’ve assumed that all notes start at an equal

duration (a half note), and we’ve removed some of the tied note values for clarity.

70

33
]
L
(:

L]

-
d‘;,,lf-'ﬂ":,'.‘_p D ?: < "’_n':m)‘g_..:b .Jl ",. “:;t;.: 2 heg '.'.r'|
g “he, " ""g":" %8ie " 4 *e s
— D = T . o i 3
3 =
o — S
6 ° : — ;%]
& - - 1- 71'
P
- - -) n el J - -
; Pag = i i s . ik
el e - 1 R - e po
é‘? > . - e Dje8 73 T3 78 S8 2 8 §
_—
] 3
— —
e -
—T & = |
b . — _—
1
-
- 5 | e L P P
- Pel s ; . bipe | " R 4 |
é"’ bELeE ° e be T5ep 1T i ee e P2 be 1B 0 Tt be Ve,
Lx I ——
5 -_-___-‘----.
2 [
i | = I
] -
o ;
) §— T3 — 3
- ! . i 4 e - .)
29: P - R P s : 1. | e R } |I
9 L R s ey of;?‘, i oe . ®_*
 a _ -

Figure 4.12: the melody from Figure 4.7 played through generation 3 of the L-system in 4.10

The primary difference between generating an entire string of musical material
with every new input note rather than our previous techniques of doing simple operations
on a “one-note in, one-note out” basis, is that the amount of data generated by the L-
system is highly amplified in relation to the amount of musical material we feed into the
system. As a result, the effect creating by ‘spawning’ a new accompaniment line with
every note correlates strongly to the impression of a melodically varied echo, with the
timing and pitch effects of the echo constructed by the L-system. In our example above,
every input note will create eleven accompaniment notes. A single input note at C 5

would create this accompaniment:

71

b BE u

(utpur
| — = - .)
g e de : qe- te - - |-J¢ de b = |I
|- e ——

Figure 4.13: a single note played through generation 3 of the L-system in 4.10
Using single notes to test the responsiveness of a particular L-system is a good
way to determine how they’ll fit in with the musical input. However, it should be noted
that, as with any delay line, complex input rhythms generate exponentially complex
output rhythms as the different accompaniment lines intersect. This holds true even if the

rhythm created by the single note ‘impulse’ to the L-system is reasonably simple.

Branching as polyphonic accompaniment

Two Lindenmayer symbols in common use in turtle interpreters are branching
symbols. Traditionally, these are indicated as ‘[‘ and ‘]’ in L-systems, and indicate the
start of a separate graphical child stream, that inherits its initial orientation from the
parent but proceeds from it independently. We could incorporate branching structures
into our L-system for music by using branches to indicate the generation of independent
polyphonic lines, that start at the pitch of parent branch but then move independently
away from the parent line.

For example, if we generate a running axiom of a performer’s input that encodes
the current pitch class (PC,) as ‘F’, the previous pitch class (PC,) as ‘X’, and the pitch
class before that (PC,,) as ‘Y’, we could perform an L-system that would manipulate
three pitches simultaneously. We could introduce branching into the accompaniment

using the following L-system as an example:

w:
pl:
p2:
p3:

FXY

F
Y
X

->
->
->

++FY
-F[X][-Y+F]
X[F+Y]

72

Figure 4.14: an L-system that uses branching and starts with a three-symbol axiom that references the last
three notes played by their pitch-classes

Each triplet of symbols is input into the system at once on every three notes of the
performance. If we use generation 2 of the L-system as our processing model, we would
spawn an accompaniment line that follows the string:
++++FY-F[X][-Y+FIX[F+Y][++FY+-F[X][- Y4+F]]-++FY [X[F+Y]][--F[X][-
Y+F]+++FY]

If you look at the string above, you’ll notice that the string has bifurcated in a
number of places to create branches. If we map out the string so that the branches form
additional rows of a string, we’d get something like the image below. The arrows
indicate how the different branches spawn relative to their previous symbol. Different

colors indicate different branches and sub-branches.

event ¥] 1 2 z 4 5 [7
(++++) F ¥ (-3 F noof-++) F
____;:_;;?' {
[o / "
[y v G+ F] [Fooof+) Vol
.-'II:.'IlI
I -2 _F
/ Fo v 11 %
4 [&-3 % {+) Fol
[i++) F Voole-) F]
M1 * %

[-2 % (+) F ol

Figure 4.15: the string generated by generation 2 of the L-system in Figure 4.14, mapped out as separate
branches for each row

73

As a new branch spawns, it inherits whatever state the parser was at when we
move to the next branch. This means that the ‘X’ on line two performs its actions
relative to the symbols leading up to it on the previous line (‘F’). However, when we
return to line one (with the ‘X’ on event number 3), the system returns to the previous
state.

If we treat as ‘active’ symbols ‘F’, ‘X, and ‘Y, and leave all the other symbols in
our alphabet as metadata, we can treat successive active symbols as events that occur on
successive beats. We could start out accompaniment sequence as soon as the third note
in the input performance occurs, and interpret the string as follows:

Play note PC, at the current transposition level.
Play note PC,; at the current transposition level.
Play note PC,., at the current transposition level.

Increment the transposition level by 7.
- Decrement the transposition level by 7.

+ < > T

Figure 4.16: our instruction set for the L-system in Figure 4.14
If we interpret every event beat to be a quarter note, and we treat the
transpositions to affect only pitch classes (maintaining the correct octave), we could get
something like this for a three-note input melody (the performed melody is on the top

staff, with the accompaniment below):

é, == 5

; — T =

Figure 4.17: a musical accompaniment using the L-system in Figure 4.14

Some of the features of this particular Lindenmayer string become salient in the

polyphonic accompaniment. For example, the statistical prevalence of ‘+’ symbols over

74

‘> symbols weights the output pitches well into the positive range on the cycle of 5. A
more balanced L-system would correct for some of that discrepancy. In addition, the
nesting patterns of this generation work in such a way that the polyphony varies in an
arch throughout the string, reaching a maximum number of active branches three beats
before the end of the sequence.

The L-system outlined above is effectively doing a combination of the techniques
we’ve already looked at. It computes a running axiom by using the last three input notes
(similar to our ‘filter’ using interval vectors). Rather than translating them into a single
symbol axiom, however, we’re using all three of them discretely in our L-system. In
addition, our L-system interpreter spawns new musical events by offsetting and

transposing the notes in the original axiom in a polyphonic context.

Parametric parsing

Now that we’ve looked at some of the ways in which we can use L-systems to
generate accompaniment material in real-time, we can ruminate for a paragraph or two on
how we would take the data out of the L-systems and use it for something other than
simple manipulation of incoming pitches. While for descriptive purposes using pitch
transformations is probably the most effective way to demonstrate how the systems
spawn accompanying melodic material, there is no particular reason why we couldn’t
encode note velocity, duration (NDT values), or any other more parametric data as
symbols and have them integrated into our accompaniment strategies.

A further possibility might be to use the incoming pitch information to generate

L-system strings that are then interpreted as ‘parametric’ data for synthesis or signal

75

processing. The polyphonic accompaniment line illustrated above in Figure 4.16, for
example, could easily be used to set the resonant frequencies of a filter bank, through
which the musical performance could be processed. Similarly, we could use L-systems
to generate impulse response material for creating interesting reverberant spaces and
convolution processes, allowing the musical performance to sculpt the sound coming out
of the computer in a more subtle way.

The parametric data can also influence how the accompaniment is generated.
Alphabetic symbols could be added to our L-system to inform the sound-producing
modules in the computer to use different samples for the accompaniment line, for
example. As has been evident throughout our exploration of these possible
configurations, the success of any particular L-system for generating a musical texture
depends on the way the data is mapped just as much as what symbolic data the grammar
model gives us.

For example, in the piece Repeat After Me (see Scores) the final section of the
piece uses a delay processing module to alter the sound of the performer (a flautist).
Twelve delay units working in parallel process the flute. Each delay unit works at an
increasing metric value of a sixteenth note (e.g. delay unit 1 delays the flute by one
sixteenth note, delay unit 2 delays the flute by an eighth note, etc.). The delays have
variable feedback controls (to create an echoing effect) and have a resonant filter in the
chain, which can be tuned to a different frequency. The specific frequencies and
feedback amounts are determined by the current event played by the flautist, according to

an L-system.

76

We construct the axiom of the L-system by encoding the pitch class of the
currently playing note as a symbol, as well as its volume (encoded as ‘p’ for piano, ‘m’
for mezzo-piano, ‘M’ for mezzo-forte, and ‘F’ for forte). ‘2F’, or example, means that
the flautist is playing a loud tone at pitch-class 2 (‘D’). The following L-system is used

for each axiom:

: PC.A,

pl: 0 -> 2
p2: 1 -> 3
p3: 2 -> 2
p4: 3 -> 2
p5: 4 -> 6
p6: 5 -> 6
p7: 6 -> 9
p8: 7 -> 0
p9: 8 -> 3
p10: 9 -> 9
p11: T -> 9
p12: E -> 4
p13: p -> m
p14: m -> F
p15: M -> p
p16: F -> M

Figure 4.18: the parametric L-system for the echoes in Repeat After Me

Each generation of the L-system will transform the pitch classes of the incoming
note so that they attract towards pc 2 and 9 (‘D’ and ‘A’) over multiple generations.
Additionally, the dynamics of the current note will be shifted (piano input becomes
mezzo-piano output, etc.). The pitch-class output by the L-system sets the resonant
frequency of one of the delay units. The amplitude output sets the amount of delay
regeneration (‘feedback’) in the delay unit. The L-system is run for 12 generations.
However, each generation sets the duration of only one unit. Delay unit 1 will be set
according to generation 1 of the L-system, delay unit 2 will respond to generation 2, and

so forth. The feedback in the delay units guarantees some residual effects; even though

77

their resonant frequencies and regeneration amounts change with each note, there will
still be sound in the echo network from the previous note. In addition, because the
echoes are listening to the input signal from as much as three beats ago (12 sixteenth
notes), the processing set by the current note is applied to the sound of a note that already
happened.

A more direct form of parametric processing occurs softly throughout the piece.
An L-system drives a granular processing unit that segments the sound of the flautist into
small individual units (‘grains’). These grains can be overlapped, transposed, played
backwards, etc.

In this processing, the NDT values (the amount of time between notes played by
the flute) alter the spacing between grains, according to the transfer function below. The
NDT values are encoded as ‘S’ (short), ‘M’ (medium), ‘L’ (long), and ‘X’ (very long).
Symbols output by the L-system set the grain rate accordingly (a grain rate of ‘S’ means

that the grains vary between 10-50ms, ‘M’-length grains are in the 50-200ms range, etc.).

w: NDT,

pl: S -> L
p2: L -> M
p3: M -> S
p16: X -> M

Figure 4.19: the L-system to set the grain size of the processing in Repeat After Me

Multiple generations of the L-system will force the grains to attract towards
shorter durations. This accomplishes a simple process that could probably be done in a
non-symbolic manner (e.g. using a function table). However, working symbolically
allows us to use our alphabet (‘S’, ‘M’, ‘L’, and ‘X”) to synchronize another process

easily. In Repeat After Me, we use these symbols in part of the piece to determine the

78

duration of the samples output by the computer as part of the accompaniment (‘S’
samples will play very staccato, etc.).

Parametric encoding allows us to use our musical input data to control any
variable process in our interactive performance system. The L-systems allow us to add a
sophisticated layer of algorithmic processing on the symbolic data, allowing us to create
control structures for our system that are less linear and more reflective of the underlying

algorithm that we want to explore.

79

S. Conclusion

We began our discussion in this paper with some ideas on what kinds of
algorithmic processes make for good music. While there is no truly perfect answer to this
question, what we’ve presented in the past few chapters are some interesting applications
of one particular class of algorithms. Lindenmayer systems are well suited for musical
applications for many reasons that we’ve outlined already. L-systems work according to
a grammar model, an underlying scheme of evaluating form that has many applications in
music, from how we perceive music to how we go about writing it. As it happens, L-
systems also exhibit a high degree of fractal self-similarity, which exhibits itself through
the process of database amplification. This allows us to generate extensive musical
passages from a very small seed of information, while retaining a degree of coherence
throughout the form of the generated output.

The pieces included with this dissertation embody some of the diverse
applications for L-systems at all levels of the compositional process. Growing Pains (for
mandolin or guitar) is a fairly strict musical interpretation of a particular L-system string
(“the hypothetical fern”). The computer system generates visual material in synchrony
with the music, but the processing and accompaniment are very minimal and only
tangentially derived from the L-system itself. Repeat After Me (for flute) works
according to a somewhat opposite metaphor; the music played by the performer is
derived from a composite spectral analysis of some jazz harmonies expanded by an L-
system. Much of the figuration, however, is through-composed, to explore some rhythms
that work well within the framework of an interactive accompaniment. The processing

on the flute, however, is almost entirely derived from different Lindenmayer procedures,

80

including L-systems that derive a real-time accompaniment, L-systems that determine
signal processing on the flute sound, and L-systems that change the timbre of the
accompaniment lines. Biology is a trio of short pieces that can be arranged for any solo
instrument (presented here for violin) where the musical material is derived from
morphogenic L-systems. Though the pieces are algorithmically conceived, they are
included here as acoustic works with no processing.

As with all algorithmic composition “solutions” we need to resist a number of
temptations inherent in how the system works. First and foremost, the algorithmic
material generated by the computer will always demand extensive compositional
intervention to truly make it into a coherent musical shape. The plants generated by L-
systems don’t look like the real plants found in our environment. They merely map out
the salient morphogenetic features of specific species of plants without portraying any of
the unique characteristics of a particular specimen. In a similar vein, our generated music
only works as real music when the particular aesthetic concerns of a composer are
applied to the material. While some of this can be done through the algorithmic mapping
procedures we’ve discussed, much of the work needs to be done by listening and
modifying the musical information, to give it an overall shape and to make the passages
generated by the grammar model sound like musical phrases, not just a stream of
numbers. While we’d love to say that the computer, the great labor-saving device of the
past century, can help us with this part of the task, the truth is that the final, manual
intervention of the composer will always be necessary to make the piece really work. In
many ways using L-systems to make music requires more work in the end on the part of

the composer than many other algorithmic procedures. We need to pick the mapping

81

schemes, the particular L-system, how to configure the real-time input, and how to design
the overall form of the piece by varying the algorithm constantly. This may be one of its
greatest assets, as our methodology outlined above demands extensive intervention by the
composer at all levels of the process. At the end of the day, we may end up with a very
rewarding experience. Experimenting with the transcoding of abstract data can give an
artist some powerful insights into how different procedures influence the outcome. The

end result, however, is what really counts.

82

Appendix: source code examples

What follows are the source code for three programs written by the author as part
of the Cycling’74 Jitter software package for real-time matrix manipulation (Clayton,
Jones, Bernstein, DuBois, and Grosse, 2002). The first (jit.linden.c) performs
Lindenmayer string rewriting on a 1-dimensional Jitter matrix of input symbols. The
second (max.jit.turtle.c) interprets a Jitter matrix as turtle instructions, generating
QuickDraw graphical instructions for 2-D vector graphics that can be interpreted by the
Max lcd object (Freed, Lee, Ellison, and Zicarelli, 1990). The third (jit.lindenpoly.c)
interprets a 1-dimensional Lindenmayer system as a polyphonic line, parsing the

symbolic information into a 2-dimensional array based on branching symbols.

For more information on Jitter, see the Cycling’74 website (www.cycling74.com). These
objects are publicly available as part of the Software Development Kit for Jitter,

downloadable from the above website.

The source code examples are all copyright © 2002-2003 Cycling '74 -- All rights

reserved. Used by permission.

83

jit.linden.c

/*

Copyright 2002 - Cycling '74

R. Luke DuBois luke@music.columbia.edu
*/

// updated for new jit arch by rld -- 2/25/02

/*

* jit.linden interprets an incoming 1-dim, 1-plane char matrix as a Lindenmayer System (L-system).

*

* named after Aristid Lindenmayer (1925-1989), L-systems work on an interpreted grammar model wherein a syntax is defined for
* replacing individual elements of the incoming string with a replacement string. these models (called production rules, or just

* 'productions'), can be context-dependent. L-systems can also support multiple modes of branching (only one dimension of

* branching is supported here, though branches can be nested). generally speaking, L-systems get larger (not smaller) through
* successive productions (or generations of the grammar); the size of the jit matrix used by the object determines the maximum
* length of the string, so a large matrix is advisable, even if the axiom (starting string) is very small.

*

* jit.linden treats the incoming matrix as ASCII, and certain values are reserved to indicate wildcards ("*' by default) and

* branching ('[' and ']' by default). these can be set by the 'wildcard', 'leftbranch’, and 'rightbranch' attributes.

*

* the arguments to the 'ignore' and 'production’ attributes should be lists of ASCII characters, e.g.:

*

* 'ignore F C A" tells jit.linden to ignore the ASCII characters 'F', 'C', and 'A" when checking context during a production match.

* typically ignored symbols are characters which describe geo-spatial information (e.g. turtle graphics) and aren't included in the
* grammar of the production.

*

* 'production * F * +F[F]' tells jit.linden to take every instance of the ASCIl character 'F' found in the input matrix and replace it
* with the string '+F[F]'. the output string is lengthened as a result, so that the first four generations of an L-system with an axiom
* of 'F' (as a starting point) would look like this:

*

*F

* +F[F]

* ++F[F][+F[F]]

* +++F[FI[+F[F11[++F[FI[+F[F11]

*

* more complex models can be created by adding multiple productions, or by introducing context matching into the L-system grammar.
* for example, the message:
*

* 'production G F * +F'

*

* instructs jit.linden to replace values of 'F' with '+F' only if the character preceding the 'F'is a 'G'. otherwise, the 'F' is
* simply echoed to the output string unchanged. if you were to give jit.linden the message:

*

* 'production GF * +F * G * G-'
*

* multiple productions are defined. 'F'is replaced as in the example above, but the character 'G' is now replaced by 'G-' as well.

* up to 50 productions in the format <left_context> <strict_predecessor> <right_context> <successor_string> can be sent to jit.linden.
* the predecessor symbol and the left and right contexts must be single characters in jit.linden (though this is not necessarily true

* for all L-system interpreters). the successor (or replacement string) can be as long as you like.

*

* typically, the output of jit.linden will then be interpreted by an object which scans the string and interprets the symbols as commands.
* the jit.turtle object interprets L-systems as turtle graphics, so that characters such as 'F', '+', and '-' acquire special meaning.

* you could easily use jit.iter (or a holding jit.matrix object polled by 'getcell' messages) to access the Lindenmayer string in Max.

* you can then 'select' against certain ASCIl values and use those values to generate any kind of graphical or sonic data you like. the

* example patches in the jit distribution called 'Lindenmayer Examples' give examples of generating 2-D graphics with L-systems within
* Max/jit.

*

*/
#include "jit.common.h"

typedef struct _jit_linden

{
t_object ob;
t_symbol *ignoresym[128], *prodsym[200];
char wildcard, leftbranch, rightbranch;
long ignorecount, prodcount, boundmode;
} t_jit_linden;

void *_jit_linden_class;

t_jit_linden *jit_linden_new(void);

void jit_linden_free(t_jit_linden *x);

t_jit_err jit_linden_matrix_calc(t_jit_linden *x, void *inputs, void *outputs);

void jit_linden_calculate_ndim(t_jit_linden *x, long dimcount, long *dim, long planecount,
t_jit_matrix_info *in_minfo, char *bip, t_jit_matrix_info *out_minfo, char *bop);

t_jit_err jit_linden_init(void);

t_jit_err jit_linden_init(void)

{

long attrflags=0;
t_jit_object *attr, *mop;

_jit_linden_class = jit_class_new("jit_linden",(method)jit_linden_new,(method)jit_linden_free,
sizeof(t_jit_linden),A_CANT,OL); //A_CANT = untyped

//add mop

mop = jit_object_new(_jit_sym_jit_mop,1,1); //#inputs,#outputs
jit_mop_single_type(mop,_jit_sym_char);
jit_mop_single_planecount(mop,1);
jit_class_addadornment(_jit_linden_class,mop);

//add methods
jit_class_addmethod(_jit_linden_class, (method)jit_linden_matrix_calc, "matrix_calc", A_CANT, OL);

//add attributes
attrflags = JIT_ATTR_GET_DEFER_LOW | JIT_ATTR_SET_USURP_LOW;

// ignore -- sets symbols to ignore while context matching

attr = jit_object_new(_jit_sym_jit_attr_offset_array, "ignore", _jit_sym_symbol, 128,
attrflags, (method)OL, (method)OL, calcoffset(t_jit_linden, ignorecount),
calcoffset(t_jit_linden,ignoresym));

jit_class_addattr(_jit_linden_class,attr);

// production -- defines production rules for the L-system

attr = jit_object_new(_jit_sym_jit_attr_offset_array, "production", _jit_sym_symbol, 200,
attrflags, (method)OL, (method)OL, calcoffset(t_jit_linden, prodcount),
calcoffset(t_jit_linden,prodsym));

jit_class_addattr(_jit_linden_class,attr);

// wildcard -- sets wildcard character

attr = jit_object_new(_jit_sym_jit_attr_offset,"wildcard",_jit_sym_char,attrflags,
(method)OL,(method)OL,calcoffset(t_jit_linden,wildcard));

jit_class_addattr(_jit_linden_class,attr);

// leftbranch -- sets left branch character

attr = jit_object_new(_jit_sym_jit_attr_offset,"leftbranch",_jit_sym_char,attrflags,
(method)OL,(method)OL,calcoffset(t_jit_linden,leftbranch));

jit_class_addattr(_jit_linden_class,attr);

// rightbranch -- sets right branch character

attr = jit_object_new(_jit_sym_jit_attr_offset,"rightbranch",_jit_sym_char,attrflags,
(method)OL,(method)OL,calcoffset(t_jit_linden,rightbranch));

jit_class_addattr(_jit_linden_class,attr);

// boundmode -- sets wrapping flag

attr = jit_object_new(_jit_sym_jit_attr_offset,"boundmode",_jit_sym_long,attrflags,
(method)OL,(method)OL,calcoffset(t_jit_linden,boundmode));

jit_class_addattr(_jit_linden_class,attr);

jit_class_register(_jit_linden_class);

return JIT_ERR_NONE;

t_jit_err jit_linden_matrix_calc(t_jit_linden *x, void *inputs, void *outputs)

{

t_jit_err err=JIT_ERR_NONE;

long in_savelock,out_savelock, dimmode;

t_jit_matrix_info in_minfo,out_minfo;

char *in_bp,*out_bp;

long i,dimcount,planecount,dim[JIT_MATRIX_MAX_DIMCOUNT];
void *in_matrix, *out_matrix;

in_matrix = jit_object_method(inputs, _jit_sym_getindex, 0);
out_matrix = jit_object_method(outputs, _jit_sym_getindex, 0);

if (x&&in_matrix&&out_matrix) {

in_savelock = (long) jit_object_method(in_matrix,_jit_sym_lock,1);
out_savelock = (long) jit_object_method(out_matrix,_jit_sym_lock,1);

jit_object_method(in_matrix,_jit_sym_getinfo,&in_minfo);
jit_object_method(out_matrix,_jit_sym_getinfo,&out_minfo);

84

jit_object_method(in_matrix,_jit_sym_getdata,&in_bp);
jit_object_method(out_matrix,_jit_sym_getdata,&out_bp);

if (lin_bp) { err=JIT_ERR_GENERIC; goto out;}
if (lout_bp) { err=JIT_ERR_GENERIC; goto out;}

//compatible types?

if ((in_minfo.type!=_jit_sym_char)Ill(in_minfo.type!=out_minfo.type)) {
err=JIT_ERR_MISMATCH_TYPE;
goto out;

}

//compatible planes?

if ((in_minfo.planecount!=1)ll(out_minfo.planecount!=1)) {
err=JIT_ERR_MISMATCH_PLANE;
goto out;

//compatible dimcounts?

if ((in_minfo.dimcount!=1)ll(out_minfo.dimcount!=1)) {
err=JIT_ERR_MISMATCH_DIM;
post("needs to be 1 dim");
goto out;

}

//get dimensions/planecount
dimcount = out_minfo.dimcount;
planecount = out_minfo.planecount;
for (i=0;i<dimcount;i++) {
dim[i] = MIN(in_minfo.dim[i],out_minfo.dim[i]);
}

//calculate
jit_linden_calculate_ndim(x, dimcount, dim, planecount, &in_minfo, in_bp, &out_minfo, out_bp);

} else {
return JIT_ERR_INVALID_PTR;
}
out:
jit_object_method(out_matrix,gensym("lock"),out_savelock);
jit_object_method(in_matrix,gensym("lock"),in_savelock);
return err;
}
//

//recursive functions to handle higher dimension matrices, by processing 2D sections at a time
//

// jit_linden_calculate_ndim() -- when x->dimmode==-1, sorts both dimensions together
void jit_linden_calculate_ndim(t_jit_linden *x, long dimcount, long *dim, long planecount,

t_jit_matrix_info *in_minfo, char *bip, t_jit_matrix_info *out_minfo, char *bop)
{

long i,j,k,l,p,width,height, index;

long glow[3], outpix, lum, tol, bw, tmax, temp, mode;

float indperc;

uchar *ip,*op,*edge,*scanptr;

t_symbol *tempsym;

t_symbol *prodsym[200];

long ignorecount=x->ignorecount;

long prodcount=x->prodcount;

long matchlen[200];

long ismatch;

char ignorebuf[256];

char *tempchar;

long cl_ok, cr_ok, level;

long boundmode = CLAMP(x->boundmode, O, 1);

// reserved lindenmayer symbols as ASCII values

char leftbranch=x->leftbranch; // '[' -- starts a branch in the L-system

char rightbranch=x->rightbranch; // ']' -- ends a branch in the L-system

char wildcard=x->wildcard; // '*' -- used as a wilcard character in context-matching

// symbols to ignore
for(i=0;i<256;i++) {

ignorebuf[i] = O;
}

for(i=0;i<ignorecount;i++) {

85

}

86

tempsyms=x->ignoresym[i];
ignorebuf[*tempsym->s_name] = 1;

// left context, strict predecessor, right context, successor, length of successor
for(i=0;i<prodcount-3;i+=4) {

}

prodsym[i]=x->prodsym([i];
prodsym[i+1]=x->prodsyml[i+1];
prodsym[i+2]=x->prodsym[i+2]
prodsym[i+3]=x->prodsym[i+3];

matchlen[i] = strlen(prodsym[i+3]->s_name);

i

if (dimcount<1) return; //safety

dim[1]=1;

width = dim[0];

height = dim[1];

edge = bop+width-1; // pointer to end of row

ip = bip;

op = bop;

// go through 1 dim only

if(boundmode) *op++ = *ip++;

// zero pad the start of the string so there's no boundary condition when context matching (faster)
for (j=boundmode;j<width;j++) {

ismatch=-1;
cl_ok = 0;
cr_ok = 0;

// compare the current input char against the production predecessors.
// if there's a match, set ismatch to which production it is (productions increment in sets of 4.
for(k=0;k<prodcount-3;k+=4) {
if(*ip==*prodsym[k+1]->s_name) {
ismatch=k;
//post("match on %i production %i", j, k);

// there's a match for this character. check its context to see if there's a true match

// right context:
if(*prodsym[ismatch+2]->s_name != wildcard) {
// need to check right context
//post("checking right context for %i", j);
scanptr=ip; // temporary pointer for checking context
cr_ok=0;
if(scanptr==edge) goto outcr; // end of line, there's no context match
scanptr++; // go right one cell and start checking contex
while(1) {
if(ignorebuf[*scanptr]) { // cell is on the ignore list

if(scanptr==edge) goto outcr;
// end of line, there's no context match
scanptr++;
// keep going right until we're not in an ignored cell
}
else if(*scanptr==leftbranch) {
// we've hit a branch... need to find the closure

if(scanptr==edge) goto outcr;

// end of line, there's no context match
level = 1;

scanptr++;

while(level) {

if(*scanptr==leftbranch) {

// we've hit another branch that we need to get

through
++level;

}

if(*scanptr==rightbranch) {
// we've closed a branch, so go down a level

--level;

}

if(scanptr==edge) goto outcr;
// end of line, there's no context match

87

scanptr++;

}
}

else if(*scanptr==*prodsym[ismatch+2]->s_name) {

//post("right context is okay for %i", j);
cr_ok=1; // right context okay for a match
goto outcr; // get out of this loop

}
else {
//post("right context is not okay for %i", j);
cr_ok=0; // right context not okay
goto outcr; // get out of this loop
}
}
}
else {
// post("right context is okay");
cr_ok=1; // right context is okay
}

outcr: // out of right context match

// left context:

if(*prodsym[ismatch]->s_name != wildcard) {

// need to check left context

//post("checking left context for %i", j);

//post("needs to be %c", *prodsym[ismatch]->s_name);
scanptr=ip; // temporary pointer for checking context
//post("scanptr is %c", *scanptr);
cl_ok=0;

if((scanptr==bip)&&(*scanptr==*prodsym[ismatch]->s_name)) {
// in boundmode O, first cell is its own left context
//post("match on first cell");
cl_ok=1;
goto outcl;

}
if(scanptr==bip) goto outcl;
// beginning of line, there's no context match
scanptr--; // go left one cell and start checking context
while(1) {
if(ignorebuf[*scanptr]) { // cell is on the ignore list

if(scanptr==bip) goto outcl;
// beginning of line, there's no context match

scanptr--; // keep going left until we're not in an ignored cell

else if(*scanptr==rightbranch) {

// we've hit a branch... need to find the closure
if(scanptr==bip) goto outcl;
// end of line, there's no context match
level = 1;
scanptr--;
while(level) {

if(*scanptr==rightbranch) {
// we've hit another branch that we need to get through

++level;

}

if(*scanptr==leftbranch) {
// we've closed a branch, so go down a level

--level;

}

if(scanptr==bip) goto outcl;
// end of line, there's no context match

scanptr--;

}

else if(*scanptr==*prodsym[ismatch]->s_name) {
//post("left context is okay for %i", j);
cl_ok=1; // left context okay for a match
goto outcl; // get out of this loop

}

else {
//post("left context is not okay for %i", j);
cl_ok=0; // left context not okay
goto outcl; // get out of this loop

}

}

else {

// post("left context is okay");
cl_ok=1; // left context is okay

}

outcl: // out of left context match

if(cr_ok&&cl_ok) goto substitute; // bail on the first true match, otherwise check next production

}
}
substitute:
//
// do the substitution (or not)
//

if(cr_ok&&cl_ok) {
// contexts are okay... substitute the successor for the predecessor in the output matrix
//post("match on %s on %i", prodsym[ismatch+1]->s_name, j);
for(p=0;p<matchlen[ismatch];p++) {
if(op<edge) { // avoid end of line
*op++ = *(prodsym[ismatch+3]->s_name + p);
}
if(op==edge) { // last character
*op = *(prodsym[ismatch+3]->s_name + p);
goto endofline;

}

else {

// contexts aren't okay... echo the input character to the output matrix
if(op<edge) {

*op++ = *ip;
}
if(op==edge) {
*op=*ip;
goto endofline;
}
}
*ip++;

endofline:

t_jit_linden *jit_linden_new(void)
{

t_jit_linden *x;

short i;

if (x=(t_jit_linden *)jit_object_alloc(_jit_linden_class)) {
x->ignorecount=0;
x->prodcount=0;
x->boundmode=1;
// reserved lindenmayer symbols as ASCII values
x->leftbranch=91; // '[' -- starts a branch in the L-system
x->rightbranch=93; // ']' -- ends a branch in the L-system
x->wildcard=42; // '*' -- used as a wilcard character in context-matching
} else {
x = NULL;
}

return x;

88

void jit_linden_free(t_jit_linden *x)

{
}

//nada

89

90

max.jit.turtle.c

/*
Copyright 2002 - Cycling '74
R. Luke DuBois luke@cycling74.com

*
~

~
*

jit.turtle emulates simple LOGO-style graphics. it interprets single char values in its inlet as ASCII letters
that describe turtle graphics commands. a valid ASCII input will generate appropriate drawing commands for use with
either the Max LCD object or the jit.lcd object (it potentially works with udraw and 242.qd as well).

jit.turtle supports branching (via the '[' and ']' symbols) up to a maximum stack size of 1024 nested branches. while
this is kind of neat by itself, it is most useful when used with automatic string generators (either Max patches or objects
such as jit.linden). ASCIl codes which don't make any sense to jit.turtle are ignored. symbols which the user wishes to
bypass can be filtered out by placing a 'select' or 'route' object with the appropriate ASCIl numbers between the

source of the commands and the jit.turtle object.

while jit.turtle doesn't use jit matrices to store and generate data, it uses the jit attribute system to set and poll
its internal state (origin, angle, scale, and clearmode are all jit attributes). an ordinary "turtle' Max object,
which doesn't require jit to run, could be ported from this code with a minimum of fuss.

turtle graphics packages are fairly ubiquitous and some have conflicting syntaxes. the turtle syntax used in this object

is optimized for the visualization of Lindenmayer Systems (or L-systems), which tend to use the same bunch of commands.
if the turtle you're used to has a different symbol table (e.g. penup/pendown independent of motion) or contains additional
commands, you should be able to add them under the max_jit_turtle_int() function easily. things like additional algorithmic
support of variable angles and scaling (size of the steps in the 'forward' commands), polygon support (some turtle systems
have automatic polygon generation using 'G', 'g', '{', and '}"), and QuickDraw colors would be kind of fun, i think.

R

*
~N

/*

* if you were never subjected to turtle graphics in school (or elsewhere), the basic idea is this:

*

you are a turtle. as if that weren't bad enough, you are also inhibited by only being able to turn and go forward in
discrete amounts (you can also turn around). however, to make up for this your creator has given you two very cool
genetic advantages over the average reptile:

1) you have a limitless supply of ink which secretes from your tail (which is usually referred to as the PEN). by dragging
your tail along the floor as you move and turn you can therefore tell the entire world (or, at least, anyone who looks) all
about how much it sucks to be a turtle.

2) you can make quantum jumps back and forth to geographical positions and bearings where you've been before (though, to be
fair, you don't really know anything about those positions until you get there). this is called BRANCHING, and it lets you,
a mere turtle, draw some incredibly complex images.

as a turtle, your basic instruction set is the following (at least this is how i've implemented it):
you can...

- move forward a discrete amount with your tail down (drawing a line) -- the command for this is 'F'.

- move forward a discrete amount with your tail up (changing your position without drawing ('f').

- turn right ('+'), left (*-"), or around ('l').

- press harder ('#') or lighter ("!") with your tail, creating a thicker or thinner line.

- start ('[') or end (']") a branch, which lets you remember a position and angle and then magically return to it later.

your starting position and quantifiable attributes (such as how many steps you take when you move forward and how many
degrees you turn at a time) can be changed as you go by the Max patch in which you live. good luck.

B T . S N R

*
~N

#include "jit.common.h"
#include "math.h" // necessary for the polar->cartesian stuff in the drawing routines

#define PI2 6.2831853
#define MAXSTACK 1024 // maximum number of branches... you can change this if you want to roll your own

typedef struct _max_jit_turtle

{
t_object ob;
void *obex; // we don't really need this, but whatever
void *turtleout;
// turtle attributes -- feel free to add your own here.
long command;
long clearmode;
long origin[2];
long origincount;
long angle;

long scale;

double thisangle[MAXSTACK];

long curstack;

long stacknew;

long pensize[MAXSTACK];

long stack_x[MAXSTACK], stack_y[MAXSTACK];

} t_max_jit_turtle;

void *max_jit_turtle_new(t_symbol *s, long argc, t_atom *argv);

void max_jit_turtle_free(t_max_jit_turtle *x);

void max_jit_turtle_assist(t_max_jit_turtle *x, void *b, long m, long a, char *s);

void max_jit_turtle_bang(t_max_jit_turtle *x); // does nothing

void max_jit_turtle_int(t_max_jit_turtle *x, long n); // this is where the QD stuff is interpreted
void max_jit_turtle_reset(t_max_jit_turtle *x); // resets the turtle's state

void *max_jit_turtle_class;

void main(void)

{
long attrflags;
void *p,*attr;
setup(&max_jit_turtle_class, max_jit_turtle_new, (method)max_jit_turtle_free, (short)sizeof(t_max_jit_turtle),
OL, A_GIMME, 0);
p = max_jit_classex_setup(calcoffset(t_max_jit_turtle,obex));
attrflags = JIT_ATTR_GET_DEFER_LOW | JIT_ATTR_SET_USURP_LOW ;
// origin -- where to start drawing from (or reset to with a 'reset' message)
attr = jit_object_new(_jit_sym_jit_attr_offset_array,"origin",_jit_sym_long,2,attrflags,
(method)0,(method)0,calcoffset(t_max_jit_turtle,origincount),calcoffset(t_max_jit_turtle,origin));
max_jit_classex_addattr(p,attr);
// angle -- angle factor for turning the turtle
attr = jit_object_new(_jit_sym_jit_attr_offset,"angle",_jit_sym_long,attrflags,
(method)0,(method)0,calcoffset(t_max_jit_turtle,angle));
max_jit_classex_addattr(p,attr);
// scale -- stepsize for moving the turtle
attr = jit_object_new(_jit_sym_jit_attr_offset,"scale",_jit_sym_long,attrflags,
(method)0,(method)0,calcoffset(t_max_jit_turtle,scale));
max_jit_classex_addattr(p,attr);
// clearmode -- send a clear on reset or not
attr = jit_object_new(_jit_sym_jit_attr_offset,"clearmode",_jit_sym_long,attrflags,
(method)0,(method)0,calcoffset(t_max_jit_turtle,clearmode));
max_jit_classex_addattr(p,attr);
addmess((method)max_jit_turtle_reset, "reset", A_GIMME,0);
max_jit_classex_standard_wrap(p,NULL,0);
addmess((method)max_jit_turtle_assist, "assist", A_CANT,0);
addbang((method)max_jit_turtle_bang);
addint((method)max_jit_turtle_int);
max_jit_class_addmethods(jit_class_findbyname(gensym("jit_turtle")));
}
void max_jit_turtle_bang(t_max_jit_turtle *x)
{
// pontificate here...
post("HEY, YOU! STOP BANGING THE TURTLE!!");
}

void max_jit_turtle_int(t_max_jit_turtle *x, long n)
{

t_atom a[16];

double tempangle;

double temp_x, temp_y;

long dest_x, dest_y;

long curstack = x->curstack;

x->command = n; // why do we do this? i can't remember...

// check to see if the integer received matches the ASCIl code for one of these commands.
// if so, compute the appropriate QuickDraw response and pass it out the outlet as a Max message.
switch(n) {
case (35): // '#' - increase pen size
x->pensize[curstack] = x->pensize[curstack]+1;

91

92

jit_atom_setlong(&a[0],x->pensize[curstack]);
jit_atom_setlong(&a[1],x->pensize[curstack]);
outlet_anything(x->turtleout, gensym("pensize"), 2, a);
break;
case (33): // "' - decrease pen size
if(x->pensize[curstack]>1) x->pensize[curstack] = x->pensize[curstack]-1;
jit_atom_setlong(&a[0],x->pensize[curstack]);
jit_atom_setlong(&a[1],x->pensize[curstack]);
outlet_anything(x->turtleout, gensym("pensize"), 2, a);
break;
case (70): // 'F' - move forward and draw
if(x->stacknew) {
x->stack_x[curstack] = x->origin[0];
x->stack_y[curstack] = x->origin[1];
x->stacknew=0;
}
temp_x = (double)x->scale*jit_math_cos(x->thisangle[curstack]);
temp_y = (double)x->scale*jit_math_sin(x->thisangle[curstack]);
dest_x = x->stack_x[curstack]+temp_x+0.5;
dest_y = x->stack_y[curstack]+temp_y+0.5;
jit_atom_setlong(&a[0],x->stack_x[curstack]);
jit_atom_setlong(&a[1],x->stack_y[curstack]);
jit_atom_setlong(&a[2],dest_x);
jit_atom_setlong(&a[3],dest_y);
outlet_anything(x->turtleout, gensym("linesegment"), 4, a);
x->stack_x[curstack] = dest_x;
x->stack_y[curstack] = dest_y;
break;
case (102): // 'f' - move forward and don't draw
if(x->stacknew) {
x->stack_x[curstack] = x->origin[0];
x->stack_y[curstack] = x->origin[1];
x->stacknew=0;
}
temp_x = (double)x->scale*jit_math_cos(x->thisangle[curstack]);
temp_y = (double)x->scale*jit_math_sin(x->thisangle[curstack]);
dest_x = x->stack_x[curstack]+temp_x+0.5;
dest_y = x->stack_y[curstack]+temp_y+0.5;
x->stack_x[curstack] = dest_x;
x->stack_y[curstack] = dest_y;
break;
case (91): // '[' - start a branch
if(x->curstack>(MAXSTACK-2)) { // you can uncomment this post() if you prefer... it's kind of annoying, IMHO.
// post("out of stack range -- not branching");

}

else {
// copy current coords and angle to next branch and increment the stack
x->stack_x[curstack+1] = x->stack_x[curstack];
x->stack_y[curstack+1] = x->stack_y[curstack];
x->thisangle[curstack+1] = x->thisangle[curstack];
x->curstack++;

}

break;

case (93): // ']' - end a branch and decrement the stack
if(curstack>0) x->curstack--;
break;

case (43): // '+' - turn right
x->thisangle[curstack]+=((x->angle/360.)*PI2);
break;

case (45): // '-' - turn left
x->thisangle[curstack]-=((x->angle/360.)*PI2);
break;

case (124): //'I' - turn around
x->thisangle[curstack]+=(0.5*PI2);
break;

default: // no match, don't do anything

break;

}

void max_jit_turtle_reset(t_max_jit_turtle *x)

{
t_atom a[16];
short i;

x->curstack = 0;
x->stacknew = 1;

for(i=0;i<MAXSTACK;i++) {
x->thisangle[i] = -PI2/4.; // start facing north (upwards, towards your menubar).

93

x->stack_x[i] = x->origin[0];
x->stack_y[i] = x->origin[1];
x->pensize[i]=1;

}

jit_atom_setlong(&a[0],x->pensize[x->curstack]);
jit_atom_setlong(&a[11,x->pensize[x->curstack]);
outlet_anything(x->turtleout, gensym("pensize"), 2, a);

// if the 'clearmode' attribute is set have jit.turtle tell the QuickDraw object downstream to clear itself.
if(x->clearmode) outlet_anything(x->turtleout, gensym("clear"),0,0L);

void max_jit_turtle_assist(t_max_jit_turtle *x, void *b, long m, long a, char *s)

{
}

//nada for now

void max_jit_turtle_free(t_max_jit_turtle *x)

{

}

//only max object, no jit object
max_jit_obex_free(x);

void *max_jit_turtle_new(t_symbol *s, long argc, t_atom *argv)

{

t_max_jit_turtle *x;
t_jit_matrix_info info;

long attrstart,i,j;
jit_matrix_info_default(&info);

x = (t_max_jit_turtle *)max_jit_obex_new(max_jit_turtle_class,gensym("jit_turtle"));
max_jit_obex_dumpout_set(x, outlet_new(x,0L)); //general purpose outlet(rightmost)
x->turtleout = outlet_new(x,0L); // outlet for the LCD commands

x->clearmode = 1;

x->scale = 10;
x->angle = 30;
x->origin[0] = 80; // kind of arbitrary, but i think the default jit.lcd matrix size is 160x120.
x->origin[1] = 120;
x->origincount = 2;
x->curstack=0;
x->stacknew=1;
for(i=0;i<MAXSTACK;i++) {
x->thisangle[i] = -PI2/4.; // start facing north (upwards)
x->stack_x[i] = x->origin[0];
x->stack_y[i] = x->origin[1];
x->pensize[i] = 1;

}

max_jit_attr_args(x,argc,argv); //handle attribute args

return (x);

jit.lindenpoly.c

/*

Copyright 2003 - Cycling '74

R. Luke DuBois luke@music.columbia.edu
*/

/*

* jit.lindenpoly sorts out a 1-dim L-system into 2-dims according to branches.
*

*/

#define MAXSTACK 1024

#include "jit.common.h"

typedef struct _jit_lindenpoly

{
t_object ob;
char leftbranch, rightbranch;
long boundmode;

} t_jit_lindenpoly;

void *_jit_lindenpoly_class;

t_jit_lindenpoly *jit_lindenpoly_new(void);
void jit_lindenpoly_free(t_jit_lindenpoly *x);

t_jit_err jit_lindenpoly_output_adapt(void *mop, void *mop_io, void *matrix); // need to add a second dim to the output matrix

t_jit_err jit_lindenpoly_matrix_calc(t_jit_lindenpoly *x, void *inputs, void *outputs);

void jit_lindenpoly_calculate_ndim(t_jit_lindenpoly *x, long dimcount, long *dim, long planecount,
t_jit_matrix_info *in_minfo, char *bip, t_jit_matrix_info *out_minfo, char *bop);

t_jit_err jit_lindenpoly_init(void);

t_jit_err jit_lindenpoly_init(void)

{
long attrflags=0;
t_jit_object *o, *attr, *mop;

_jit_lindenpoly_class = jit_class_new("jit_lindenpoly",(method)jit_lindenpoly_new,(method)jit_lindenpoly_free,

sizeof(t_jit_lindenpoly),A_CANT,OL); //A_CANT = untyped

//add mop

mop = jit_object_new(_jit_sym_jit_mop,1,1); //#inputs,#outputs
o = jit_object_method(mop,_jit_sym_getoutput,1);
jit_object_method(o,_jit_sym_ioproc,jit_lindenpoly_output_adapt);

jit_class_addadornment(_jit_lindenpoly_class,mop);

//add methods
jit_class_addmethod(_jit_lindenpoly_class, (method)jit_lindenpoly_matrix_calc,
A_CANT, OL);

//add attributes
attrflags = JIT_ATTR_GET_DEFER_LOW | JIT_ATTR_SET_USURP_LOW;

// leftbranch -- sets left branch character

attr = jit_object_new(_jit_sym_jit_attr_offset,"leftbranch",_jit_sym_char,attrflags,
(method)OL,(method)OL,calcoffset(t_jit_lindenpoly,leftbranch));

jit_class_addattr(_jit_lindenpoly_class,attr);

// rightbranch -- sets right branch character

attr = jit_object_new(_jit_sym_jit_attr_offset,"rightbranch",_jit_sym_char,attrflags,
(method)OL,(method)OL,calcoffset(t_jit_lindenpoly,rightbranch));

jit_class_addattr(_jit_lindenpoly_class,attr);

// boundmode -- sets wrapping flag

attr = jit_object_new(_jit_sym_jit_attr_offset,"boundmode",_jit_sym_long,attrflags,
(method)OL,(method)OL,calcoffset(t_jit_lindenpoly,boundmode));

jit_class_addattr(_jit_lindenpoly_class,attr);

jit_class_register(_jit_lindenpoly_class);

return JIT_ERR_NONE;

"matrix_calc",

94

t_jit_err jit_lindenpoly_output_adapt(void *mop, void *mop_io, void *matrix)

{
void *m;
t_jit_matrix_info info;
long tmp;
if (matrix&&(m=jit_object_method(mop_io,_jit_sym_getmatrix))) {
if(jit_attr_getlong(mop,_jit_sym_adapt))
{
jit_object_method(matrix,_jit_sym_getinfo,&info);
info.dim[1] = MAXSTACK;
info.dimcount = 2;
jit_object_method(m,_jit_sym_setinfo,&info);
jit_object_method(m,_jit_sym_clear);
}
else {
jit_object_method(m,_jit_sym_clear);
}
}
return JIT_ERR_NONE;
}

t_jit_err jit_lindenpoly_matrix_calc(t_jit_lindenpoly *x, void *inputs, void *outputs)
{

t_jit_err err=JIT_ERR_NONE;

long in_savelock,out_savelock, dimmode;

t_jit_matrix_info in_minfo,out_minfo;

char *in_bp,*out_bp;

long i,dimcount,planecount,dim[JIT_MATRIX_MAX_DIMCOUNT];

void *in_matrix, *out_matrix;

in_matrix = jit_object_method(inputs, _jit_sym_getindex, 0);
out_matrix = jit_object_method(outputs, _jit_sym_getindex, 0);

if (x&&in_matrix&&out_matrix) {

in_savelock = (long) jit_object_method(in_matrix,_jit_sym_lock,1);
out_savelock = (long) jit_object_method(out_matrix,_jit_sym_lock,1);

jit_object_method(in_matrix,_jit_sym_getinfo,&in_minfo);
jit_object_method(out_matrix,_jit_sym_getinfo,&out_minfo);

jit_object_method(in_matrix,_jit_sym_getdata,&in_bp);
jit_object_method(out_matrix,_jit_sym_getdata,&out_bp);

if (lin_bp) { err=JIT_ERR_GENERIC; goto out;}
if (lout_bp) { err=JIT_ERR_GENERIC; goto out;}

//compatible types?

if ((in_minfo.type!=_jit_sym_char)ll(in_minfo.type!=out_minfo.type)) {
err=JIT_ERR_MISMATCH_TYPE;
goto out;

}

//compatible planes?

if ((in_minfo.planecount!=1)ll(out_minfo.planecount!=1)) {
err=JIT_ERR_MISMATCH_PLANE;
goto out;

//compatible dimcounts?

if ((in_minfo.dimcount!=1)ll(out_minfo.dimcount!=2)) {
err=JIT_ERR_MISMATCH_DIM;
post("needs to be 1 dim");
goto out;

}

//get dimensions/planecount

dimcount = out_minfo.dimcount;

planecount = out_minfo.planecount;

dim[0] = MIN(in_minfo.dim[0],out_minfo.dim[0]);
dim[1] = out_minfo.dim[1];

//calculate
jit_lindenpoly_calculate_ndim(x, dimcount, dim, planecount, &in_minfo, in_bp, &out_minfo, out_bp);

} else {
return JIT_ERR_INVALID_PTR;

}
out:
jit_object_method(out_matrix,gensym("lock"),out_savelock);
jit_object_method(in_matrix,gensym("lock"),in_savelock);
return err;
}
//
//recursive functions to handle higher dimension matrices, by processing 2D sections at a time
//

// jit_lindenpoly_calculate_ndim() -- when x->dimmode==-1, sorts both dimensions together
void jit_lindenpoly_calculate_ndim(t_jit_lindenpoly *x, long dimcount, long *dim, long planecount,
t_jit_matrix_info *in_minfo, char *bip, t_jit_matrix_info *out_minfo, char *bop)

{
long i,j,k,l,p,width,height, index;
float indperc;
uchar *ip,*op,*edge,*scanptr;
long stride;
long stackpoint[MAXSTACK];
long stackhistory[MAXSTACK];
long currentvoice = 0;
long curstack = 0;
long tempstack;
int newvoiceflag = 0;
char *tempchar;
long cl_ok, cr_ok, level;
long boundmode = CLAMP(x->boundmode, O, 1);
// reserved lindenpolymayer symbols as ASCIl values
char leftbranch=x->leftbranch; // '[' -- starts a branch in the L-system
char rightbranch=x->rightbranch; // ']' -- ends a branch in the L-system
for(i=0;i<dim[1];i++) // initalize stackpoint... used to find a free line
stackpoint[i]=-1;
stackhistory[i]=0;
}
stackpoint[0] = O;
if (dimcount<1) return; //safety
width = dim[0];
height = dim[1];
stride = out_minfo->dimstride[1];
edge = bop+width-1; // pointer to end of row
ip = bip;
op = bop;
// go through 1 dim only
for (j=0;j<width;j++) {
if((j>0)&&(*ip == 0)) goto endofline; // EOF... we're outta here
if (*ip == leftbranch) { // increment the stack to the next free line
// find next free line
tempstack = curstack;
for(i=curstack;i<height;i++) {
tempstack++;
if(stackpoint[tempstack]<stackpoint[curstack])
{

stackpoint[curstack]; // start new voice on top of current voice

curstack;

stackpoint[tempstack] =

newvoiceflag = 1;
curstack=tempstack;
currentvoice++;
stackhistory[currentvoice] =

goto foundfreeline;

}

post("out of free branches");
foundfreeline:

//post("left branch at %i!", j);

97

else if (*ip == rightbranch) { // decrement the stack to the previous line

voice
}
else {
curstack);
}
*ip++;
}
endofline:
}

t_jit_lindenpoly *jit_lindenpoly_new(void)

{
t_jit_lindenpoly *x;
short i;
if (x=(t_jit_lindenpoly *)jit_object_alloc(_jit_lindenpoly_class)) {
x->boundmode=1;
// reserved lindenmayer symbols as ASCII values
x->leftbranch=91; // '[' -- starts a branch in the L-system
x->rightbranch=93; // ']' -- ends a branch in the L-system
} else {
x = NULL;
}
return x;
}

void jit_lindenpoly_free(t_jit_lindenpoly *x)
{

//nada
}

if(--currentvoice<0) currentvoice = 0;
curstack = stackhistory[currentvoice]; // move down to last

//post("right branch at %i!", j);

if(newvoiceflag) {
stackpoint[curstack]--; // KLUDGE!!
newvoiceflag=0;
}
op = bop + stackpoint[curstack] + curstack*stride;
stackpoint[curstack]++;
//post("stackpoint %i at stack %i!", stackpoint[curstack],

*op++ = *ip;

98

Bibliography

Books / Articles

L-systems, Grammar Models, and Computational Modeling

Bossomaier, Terry, and Green, David. Patterns in the Sand - Computers, Complexity
and Life. Reading, MA: Perseus Books, 1998.

Chomsky, Noam. “Three Models for the Description of Language.” IRE Transactions
on Information Theory 2. Washington, DC: IEEE (formerly IRE), 1956.

Lindenmayer, Aristid. “Mathematical models for cellular interactions in development”
(Two Parts). Journal of Theoretical Biology 18. New York: Elsevier, 1968.

Mandelbrot, B.B. The fractal geometry of nature. San Francisco: W.H. Freeman, 1982.

Minsky, Marvin, and Papert, Seymour. Perceptrons; an introduction to computational
geometry. Cambridge, MA: MIT Press, 1969.

Prusinkiewicz, Przemyslaw. “Virtual plants: new perspectives for computer graphics.”
The ScienceTerrapin 4:8. London, Ontario: UWO Press, 1979.

Prusinkiewicz, Przemyslaw. “Score Generation with L-systems.” Proceedings of the
International Computer Music Conference, 1986. Den Haag: ICMA, 1986.

Prusinkiewicz, Przemyslaw, and Lindenmayer, Aristid. The Algorithmic Beauty of
Plants. New York: Springer-Verlag, 1990.

Prusinkiewicz, Przemyslaw, Hammel, Mark, Hanan, Jim, and Mech, Radomir. “L-

systems: From The Theory To Visual Models Of Plants.” Proceedings of the Second

CSIRO Symposium on Computational Challenges in Life Sciences. Brisbane, CSIRO
Publishing, 1996.

Sierpinski, Waclaw. “The Sierpinski Triangle” (1916). Excerpted in Devaney, Keen,
eds. Chaos and fractals : the mathematics behind the computer graphics. Providence, RI:
American Mathematical Society, 1989.

Szilard, A. L., and Quinton, R. E. “An interpretation for DOL systems by computer
graphics.” The ScienceTerrapin 4:8. London, Ontario: UWO Press, 1979.

Taylor, C. E. “Fleshing Out.” In Langton, Taylor, et al, eds. Artificial Life II.
Redwood City, CA: Addison-Wesley, 1992.

99

Turing, Alan. “On computable numbers, with an application to the
Entscheidungsproblem” (1936). Reprinted in M. Davis, Ed. The Undecidable: Basic
Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions.
New York: Raven Press, 1965.

Wolfram, Stephen. A New Kind of Science. Champaign, IL: Wolfram Media, 2002.

Music Theory, Music Cognition, Acoustics, and Psychoacoustics

Bregman, Albert S. Auditory Scene Analysis. Cambridge, MA: MIT Press, 1990.

Foxley, Eric. “The Harmonisation of Melodies by Computer.” Proceedings of the
Second Symposium International Informatique et Musicologie. Paris: SIIM, 1982.

Lerdahl, Fred, and Jackendoff, Ray. A Generative Theory of Tonal Music. Cambridge,
MA: MIT Press, 1983.

Lerdahl, Fred. Tonal Pitch Space. New York: Oxford University Press, 2001.

Spector, Lee, and Alpern, Adam. “Induction and Recapitulation of Deep Musical

Structure.” Proceedings of the [JCAI-95 Workshop On Arificial Intelligence and Music.
Montréal: International Joint Conference on Artificial Intelligence, 1995.

Temperley, David. The Cognition of Basic Musical Structures. Cambridge, MA: MIT
Press, 2001.

Computer Music and Interactivity

Chadabe, Joel. Electric Sound: The Past and Promise of Electronic Music. Upper Saddle
River, NJ: Prentice Hall, 1996.

Garnett, Guy E. “The Aesthetics of Interactive Computer Music.” Computer Music
Journal 25:1. Cambridge, MA: MIT Press, 2001.

Johnson, Steven. Interface Culture: How New Technology Transforms the Way We
Create and Communicate. New York: HarperCollins, 1997.

Maurer, John. “A Brief History of Algorithmic Composition.” Unpublished. Stanford
University. ccrma-www.stanford.edu/~blackrse/algorithm.html

Paradiso, Joseph A. “American Innovations in Electronic Musical Instruments.” New
Music Box 6. http://www.newmusicbox.org/third-person/oct99/

Rowe, Robert. Interactive Music Systems. Cambridge, MA: MIT Press, 1993.

Rowe, Robert. Machine Musicianship. Cambridge, MA: MIT Press, 2001.

100

Théberge, Paul. Any Sound You Can Imagine: Making Music / Consuming
Technology. Hanover, NH: Wesleyan University Press, 1997.

Supper, Martin. “A Few Remarks on Algorithmic Composition.” Computer Music
Journal 25:1. Cambridge, MA: MIT Press, 2001.

Winkler, Todd. Composing Interactive Music: Techniques and Ideas Using Max.
Cambridge, MA: MIT Press, 1998.

Software

Clayton, Joshua, Jones, Randall, Bernstein, Jeremy, DuBois, R. Luke, and Grosse,
Darwin. lJitter. http://www.cycling74.com/products/jitter.html

Freed, Adrian, Lee, Michael, Ellison, Steve, and Zicarelli, David. The Max lcd object.
www.cnmat.berkeley.edu/MAX

Gogins, Michael. Silence. www.pipeline.com/~gogins/

Goodall, Leigh, and Watson, Matthew. lsys2midi.
http://ironbark.bendigo.latrobe.edu.au/~soddell/lsys/mapping.htm

Hiller, Lejaran, and Baker, Robert. MUSICOMP. Described at
http://arts.ucsc.edu/faculty/cope/history.html

Olafsson, Kjartan. CALMUS. http://www listir.is/calmus/

Oppenheim, Daniel. “DMIX: An Environment for Composition.” Proceedings of the
International Computer Music Conference, 1989. Columbus, OH: ICMA, 1989.

Puckette, Miller. “EXPLODE: A User Interface for Sequencing and Score Following.”
Proceedings of the International Computer Music Conference, 1990. Glasgow: ICMA,
1990.

Sharp, David. LMUSe.
http://www.geocities.com/Athens/Academy/8764/Imuse/Imuse.html

Zicarelli, David et al. Max/MSP. http://www.cycling74.com/products/maxmsp.html

Music Recordings

Dodge, Charles. “Profile.” Electro-acoustic music I. Acton, MA: Neuma Records, 1990.

Dodge, Charles. “Viola Elegy.” Viola elegy [for] viola and tape. Lebanon, NH: Frog
Peak Music, 1987.

101

Dodge, Charles. “Earth’s Magnetic Field” (1987). Columbia-Princeton Electronic Music
Center: 1961-1973. New York: New World Records, 1998.

Nelson, Gary Lee. “Summer Song” (1991) / “Goss” (1993). Available online at
timara.con.oberlin.edu/~gnelson

Pope, Stephen Travis. “Day, an Improvisation” (1987). Available online at
http://www.create.ucsb.edu/Siren/Pieces/

Roads, Curtis. “Sequence Symbols.” New computer music. Mainz: Wergo, 1987.

102

Scores

Growing Pains (for mandolin and electronics)

Repeat After Me (for flute and electronics)

Biology I/II/II (for violin)

Video files and mp3 recordings of the pieces are available at:
http://music.columbia.edu/~luke/dissertation

All music copyright © 2003 R. Luke DuBois / The Freight Elevator Quartet, Inc.
(ASCAP). All rights reserved.

103

R. Luke DuBois

Growing Pains

for mandolin and electronics

Submitted in partial fulfillment of the
requirements for the degree
of Doctor of Musical Arts
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY
2003

© 2003
Roger Luke DuBois
All Rights Reserved

104

Introduction

Growing Pains is a piece for mandolin accompanied by live processing provided by a
computer, as well as live video generated by the performer. It was written in the autumn
of 2002 for Terry Pender. It is submitted in partial fulfillment of the requirements for the
degree of Doctor of Musical Arts in the Graduate School of Arts and Sciences, Columbia
University, 2003.

The duration of the piece should be ~18 minutes.

Performance Notes

Equipment requirements:

. Macintosh PowerPC computer with stereo audio input and output (G3/500 or
higher recommended).

. Pickup or microphone for the mandolin, mixer, and PA with 2 high-quality
loudspeakers.

. High-quality SVGA video projection system.

. Hardware pitch-to-MIDI converter (e.g. Roland GI-10, IVL PitchRider) and

appropriate MIDI interface hardware are optional, but may improve
responsiveness on slower computers.

All software (Max patch and video files) is available from the composer upon request.

The mandolin should be amplified with a pickup (ideally) or a very close directional
microphone. The mandolin and the computer output should be balanced in the PA so that
the echoes generated by the computer don’t overpower the dry mandolin signal. The
piece is meant to have an ‘electric’ feel; the amplified sounds can be louder than the
acoustic sound of the mandolin.

The piece relies to some degree on the ability of the computer to detect the pitch played
by the mandolin performer. If a microphone is used, it is strongly recommended that the
piece be tested in the performance space first, so that the ideal microphone placement for
pitch-tracking can be achieved. If necessary, two microphones can be used: one for the
computer input, and another for sound reinforcement.

Notation

All notation symbols in the score are standard. Accidentals carry through the measure.
A second staff indicating cues in the signal processing is provided so that the performer
(or a computer operator) can make sure that the computer is correctly following the
performer.

The performer should play as ‘clean’ as possible without excessive staccato, i.e. notes on
adjacent strings should not ring over one another.

105

Growing Pains R. Luke DuBois

/A /1
L 3 |

o s oo dse e Sgeedeesee e
mf

Mandolin

J=90 Al
O with a steady rhythm throughout
/ — == '
[

Echo Cues HH 2 t

D
AV "M I N I |
()7 | g T T 1 [T N (g [1
SV | 7 Y @]

106

—‘m:§ [—— J—— —

1 [——

D oY N [[| P & | |
a a4

30

" A ———
AV Y
()7 | | T mmY N @« N
p— /@ [4

e’

107

—
[—
No |

@Y g |
o7

/D
(6’ <~ 1 _a =
NS A B P =

108

cue 3

[THhg = (g [g EF T g1 THheg® T
-.'-_-."--"_[_A L™

e 1
b "’ | @ | g [T & T [T [T [|fouue
E T T g Vg | 7T & & g® |

109

A
((y? 5o ® /|
“‘,_'

110

cue 4

111

[D@ & ¥ % 1)4
M N R A 7 Y A —

112

113

J—
1« | T @ g™ |
) 1 @ T T 7 g

114

reg /1 rg o4 b/)

N/ ¥ Tg@O® | [& [
T__‘".l-“-

cue 9

115

T
A N

(o g ® N/® o [® 4 -7_(D | & g g T T T |
NV T re!T o o @@ &® [T /7 V| T T re 'l o @ @ g4

" A
() o g7 ® </

116

ANy .
— r
() | [9T g« T 1@ | @ gy T T ° &® | | & [[< O] (g 7 & @ | @g & N/ ®
VYV reg @@/ T /7] @& | T I/ Hgllysg SO @® @@ g [T I gy | @& | T] ghg 'l I

117

—_————__
r] L ———
D e/ o< N [T |
- 7 1®7 11 4

sy oo <

p— p—
e T
T Ng'®7 1T 4
(@ T 7 W7

118

255

p— R —
1D =N e —

Fl . e NN P T e

()7 @5 Ng Yy | & [[N\ T T

SV 7 "7 e

119

270

) N .
A-E_LQ--- —.
In‘-'l.----

120

279

ATy E——
/Al | T& N — N
()" o 'Hote | @ | YHeg @Y GJ@I

121

122

[| (@ |

N
N 1
N Ny, e =
b @ g@ T
0000000

e | _[7 FH¥ 17 VT4

N N

cue 13

he~ 9 g | g [Fe]
'-_--."--'-.

123

n.__lzv-“-r--r-“--n. _I’---'--_---\v-"
SV 7 T T e [T g — l.l_l‘."‘ T oo o ® |

o o @

NG T G N [g |
o T o

A
“‘_-..- Y S

124

[TG T g 1T Theg T T J& T I [[[T 1T
[F = [T “'—'-[D/ Y oo T do o @

125

cue 14

126

 ® [9] -_"'_-"l N ‘.) ¥ 7

-_"l -7_' D | D g g T T Tg® | [¥ 7Y & | & g1
| €T re 7 ¥ @@ 7 ¥/ | & [¥/

e @ g B N/ ® g)]
) | & [¥ 7 Heg 7 ¥ g @@ 7 7

127

cue 15

¥ Tl -7_' D | P g g T YV T |
Yre' o o@®@®® ST 7 - T el ¢ Mg @ ® GO®® T

Il
A
(o g ® </

128

R. Luke DuBois

Repeat After Me

for flute and electronics

Submitted in partial fulfillment of the
requirements for the degree
of Doctor of Musical Arts
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY
2003

© 2003
Roger Luke DuBois
All Rights Reserved

129

Introduction

Repeat After Me is a piece for flute accompanied by live processing provided by a
computer, as well as live video generated by the performer. It was written in the winter
of 2003 for Natacha Diels. It is submitted in partial fulfillment of the requirements for
the degree of Doctor of Musical Arts in the Graduate School of Arts and Sciences,
Columbia University, 2003.

The duration of the piece should be ~9 minutes.

Performance Notes

Equipment requirements:

. Macintosh PowerPC computer with stereo audio input and output (G4/667 or
higher recommended).

. Microphone for the flute, mixer, and PA with 2 high-quality loudspeakers.

. High-quality SVGA video projection system.

. Hardware pitch-to-MIDI converter (e.g. Roland GI-10, IVL PitchRider) and

appropriate MIDI interface hardware are optional, but may improve
responsiveness on slower computers.

All software (Max patch, samples and video files) is available from the composer upon
request. The piece involves heavy use of pre-recorded flute samples. Instructions are
available from the composer on how to replace them with those of a different performer.

The flute should be amplified with a very close directional microphone. A wearable
microphone (e.g. a reasonably good-quality Lavalier) should work well. The flute and
the computer output in the PA speakers should be balanced so that the processing and
samples generated by the computer don’t overpower the live flute sound. The piece
relies on the sonic integration of the live flute and accompaniment lines generated by the
computer; in order to achieve a good balance, it may be necessary for the flute to be
reinforced through the PA as well.

The piece relies to some degree on the ability of the computer to detect the pitch played
by the flute performer. It is strongly recommended that the piece be tested in the
performance space first, so that the ideal microphone placement for pitch-tracking can be
achieved. If necessary, two microphones can be used: one for the computer input, and
another for sound reinforcement.

Notation

All notation symbols in the score are standard. Accidentals carry through the measure.
Two extra staves indicating cues in the accompaniment (as well as the outer voices of the
sample clusters) are provided so that the performer (or a computer operator) can make
sure that the computer is correctly following the performer.

130

R. Luke DuBois

Repeat After Me

115 lyrical, with an easy pacing

J=

A
‘H -
Pe -rTA
#e .
e
0 9
0 |
N
_E
¥
1
e = NG
8 3 3
5 3 =
= © g
7]

(dynamics tied to flute)

g3
S
-

P Sl

{
i
r

r]
14

mf

be™

3 e be

P

13

3
.-

£

T
T
T

131

o—

-

o

VA7
14 7/

[T
7/

D]
174

<
7/

mp

21

(mf)

flute echoes fade in (ppp)

26

-

—
3

—)

—

<1

3, o

<

30

el

—3—

N
|
\
-
‘kHdv .
Ve
(]
o
[
o
fuv,
N

34

-

granular processing cue 1

132

3

p—

m) — ———————————— (pp)

17

echoes:

- £ o
\V/I\

— 3
—
I

b

—
=
T

—

granular processing and

echoes off

37

FMJﬁ
o

o . b

I P S— —

;nv 1

el
—
7
7

I/
14

.2
e

/N

43
47
{

-
S———

—

T o
L g

bo

mp

#

51223
o

133

3

N
P
e

s

P
\/\I\
| —

<
7/
14

7/

s
N+
[T

h e
&

&'
L g

6

56

T

-

17

— o
=
i

60

N

eerie and detached

64

=
ote

I He
4 4

O
©O

S
©O

S
©O

=
o
L >

mp

pp

ambient sound cue 1 fades

ambient sound cue 2 begins

granular processing cue 2

g

™ R

= T

[
I
hul

I
&
@

-

fe

1o e e

LT v
Fehe "e

i

h;' o
o

-

Sy

rs

.

[Feg
e/

17
14

<be
¢ <78 ¢

<

71

DS

153

KN

b

134

il

]
1 b

e

ks

be .

d_l;

Ty
oo o ol
ol SV R

74

J
V4 —
[fanY I 7 7~

1

* Hel

L Y

e

1
he

—_— T === ==

te

77

0H
A
[Fan)

I
>

_— == =

>
&

ﬁ%
[

o

e

he

81

flute echoes (mp)

135

=

P

\.\I.\‘:‘ .

-

83

o

Thet

ha
q

THe™
&

be, .

85

—_— mf

bo

be

88

mp

be

i

te

he

. >

be

90

granular processing off

136

92

oL .

 hes

94

granular processing cue 3

echoes off

-

> ®

he

98

>
</
7

granular processing cue 4

-

fe

be

ey

be e ™

0

b |

101

137

- e

bﬁﬂ%

-

ety

P dnatli L] | I
== |

he-sgte =

= =

I 1]

gl

P
===

bes e £ u5 bRy,

bak

= =

104

2O
I3

bo

be

A

V;r‘h#
=

Py
e
I

110

be

flute echoes (mf)

113

bo

b

e op.

e

el

to

=,

1
he

granular processing off

138

118

-

Se

=
==

mf

w
)

D>

ey
I

T
b

—r

i

~ o .
.-.

£t

y,

122

=

>

he

O

O

O

be

126

ambient sound cue 2 fades

/Lo

D>

133 expressive and lyrical

127
o

flute echoes off

139

o

7 -

Ge_%

H—

138

second sampler begins (mp)

ambient sound cue 3 begins

v

142

—

(mp)

second sampler

32

17
14

Y

~

n

=

- &
S——

g

N T ugy

147

gee

L

mf

(mf)

7

NS

- .F_

151

17

ez

£ o

—

D™y
e

>

140

(N1

I

I I
e &
I Rl

&'
@
1

LY

I
I
&
&

156

v

H./'\
e e
I

N
N

N
A

-

—

br‘\

P
e
1

teet
i
1

7=

XS
4

&
®

r‘
I
t

»

/—\
o O

#

165

O —F e

7>

° L2 o

I
&

e

Y o o
< B
A" |

I
I
&
&

= fe & —

) = =

P K
@

7 &
&

170

141

1
Te 1
o/
&

-

<
g 7
e

‘o™

be

mf

IS

178

—3

D>

v

-

—~

-

be.

h

£

o o -
&

I
D
&

bée

182

3—

—

I
mp —————— pp

L 4 F.‘.

mf

—L—
- o

186

flute echoes (fade to mf)

S

142

—3

—3

s
< &

19

P
=
[

~3-1

190

0

te

7

7

il

P
o

= =

r—3—

0

194

7

4|

I

Py
e

17

‘e

17
.

[T e VA&
%]

\

NN P Y

s-
—

197

-

143

pee|

I

I
P~
&

T
>
=
I

betrebe!

o s

=]

-
=

203

—————————— flute echoes (pp)

-

AT i

19

—

e o

s

207
0
7

be o
ye-o

211

[T &

- f'

o o
- O

1)

omny
o O

bl

*te ¢

=

]

]

#S

hIE 3

\

Pia
oy
\

-
oo |
—oe

o
tJ;‘ =

e [[==

o
- &
—

215

TE
ok
“rt

T
T
\

144

219

L1
L 1

—3

&
&

#

Hel
A
mp

granular processing off
flute echoes (mf)

#

RS

———————————"""" flute echoes (mf)

p

~—~"

=

&
L ®®
¥

N7
7 e

L)

.83
mf

granular processing cue 5
L el

#T T
P

e o |
#ET |

second sampler off

h —

225
230
235

145

240

ambient sound cue 3 fades

(ppp)

243

slowly fade away...

146

R. Luke DuBois

Biology I/II/III

for violin

Submitted in partial fulfillment of the
requirements for the degree
of Doctor of Musical Arts
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY
2003

© 2003
Roger Luke DuBois
All Rights Reserved

147

Introduction

Biology is a trio of short pieces for solo violin. It was written in the spring of 2003 for
Maja Cerar. It is submitted in partial fulfillment of the requirements for the degree of
Doctor of Musical Arts in the Graduate School of Arts and Sciences, Columbia
University, 2003.

The duration of the three pieces should be ~1, 2, and 3 minutes, respectively.

Performance Notes

The violin may be amplified, if desired. If so, an acoustic ‘tone’ should be maintained in
the sound reinforcement.

Notation
All notation symbols in the score are standard, except where noted below.

Accidentals carry through the measure.

-
- -

o -, Indicates phrase boundaries, and should not be taken as
bowing instructions or slurs.

f Always as fast as possible.

a march for the indecisive
arco

148

R. Luke DuBois

with growing determination...

b v Nu v g tis
n.mm-z—nz-uj‘u

rit. - - -
13 T T T T T T T T T T e (at tempo)

| ~ N
e
EGE -

D)
mf
...and it's gone!

19 pizz. (as fast as possible) arco

a possible solution?

(fade to nothing)

149

R. Luke DuBois

Biology II

135 like a very strange dream

J=

—37
b

S
r] 2.
-

1

#

arco

b 3

0
(D X%

AN

Violin §

pp

#

) —331

TR

mp

17

mf‘

26

Ko
~—
mp

o

=
~—— T ~—

— 7'2&

S

mf

34

(let harmonics ring)

sul ponticello.

mp

44

n g

bz

v

= T~ T~ ~— T S

Af E—— /]

arco

52

—3—1

—3—

()———————————-—---- 37

n

)|

[Fan

S

&)

mp

150

R. Luke DuBois

Biology III

hul

L)
LI
|
1 A
- a
SA
[/
|| I
/
[
il
ﬁ =3
/
/! Aon\
' 4]
1
[®
! o]
“ X
ey
| 18
VL]
N
\
\
N RN
= o/ g
2 O &
= =
.|.VJ N
<
v
©
Il
N

Violin

more detached

—3

mp

Z1

1

by

&

*

L
o]
)

pp

— —7

questioning

17
14

—
A
<dh J I
e
mp ————— Ppp

ﬁ’3j =33

more decisive here

/I?

delicate, .-~

20

7 7
B r

1
he

b

- mp

S

151

£
-
e

I
o

J

174
7

O
7

30 pensive
#
[fan WA/
ANSYS 5)

question?

33—

35

>

more and more confident to end

answer.

g

oY
1

mf

e
b

b

39

* arpeggiate at a slower speed, but keep the arpeggios separate.

